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Abstract: Microneedles (MNs) have been developed as medical devices for enhanced and 

painless transdermal drug and vaccine delivery. MN-based vaccine application, unlike conven-

tional intramuscular or subcutaneous application using hypodermic needles, delivers vaccine 

directly into skin, which is known to be an immunologically much more relevant vaccination 

site than underlying tissue. Vaccination using MN devices targets the skin’s rich immune system, 

leading to better utilization of the antigen and resulting in superior immune response, often 

achieved using a lower vaccine dose than required by conventional delivery routes. However, 

despite the number of advantages and nearly four decades of research, the number of licensed 

MN-based vaccines remains limited to date. Nevertheless, it is to be expected that on the back 

of a number of recently developed scalable and robust MN-fabrication methods, more intensive 

translation into clinical practice will follow. Here, we review the current status and trends in 

research of MN-related vaccine delivery platforms, focusing on the most promising approaches 

and clinically relevant applications.
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Introduction
Most current human vaccines are still delivered using a hypodermic needle. With a few 

rare exceptions, such as oral polio vaccine or intranasal influenza vaccine, traditional 

intramuscular or subcutaneous injection is still the preferred route of application, 

even for novel vaccines. This is not due to a lack of alternative approaches – quite the 

contrary. A number of alternative needle-free vaccine delivery platforms have been 

suggested over the past few decades.1 The long list includes edible vaccines,2 various 

physical methods for delivery of DNA-based vaccines (gene gun, electroporation, 

ultrasound1,3,4), high-velocity powder and liquid-jet injection,5,6 diffusion-based patches 

combined with skin abrasion/ablation7–9 and chemical enhancers,10 microneedles 

(MNs),11 and others.12 Many of these platforms are at least partially complementary 

in their potential applications. The choice of the optimal delivery method largely 

depends on the nature of the vaccine (protein, DNA, virus, etc), nature of the adjuvant, 

and formulation details. To date, the most commercially successful have been devices 

compatible with existing liquid or lyophilized formulations based on liquid-jet and 

microinjection/microneedle technologies.13 Use of MN-based technologies for vac-

cine delivery has been attracting considerable interest lately, driven by both increas-

ing knowledge of skin immunology and advances in microelectronics, which enable 

production of such micron-scale devices. The concept of submillimeter needle-shaped 

structures that would pierce through the outermost skin layers and increase their 
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permeability several thousandfold but without stimulating 

the underlying nerve endings and causing pain was first 

conceptualized in 1976.14 Early development of MNs was 

focused mainly on delivery of low-dose, low-molecular-

weight drugs into the skin. In the last decade, the use of MNs 

as a vaccine delivery platform has gained significant interest, 

driven largely by recent efforts to develop novel, painless, 

and dose-sparing influenza vaccines.11,15

MN-assisted vaccine delivery has the potential to 

overcome many of the disadvantages of traditional needle-

and-syringe delivery routes. Injections using hypodermic 

needles are invasive and painful, the vaccine delivered may 

have a less than ideal pharmacokinetic profile,16 and result 

in intentional reuse and unintentional needle injuries, which 

may be responsible for over a half million deaths annually 

due to transmission of infectious diseases.17 MN-based vac-

cine platforms may deliver the vaccine dose reproducibly, 

enhance the pharmacokinetic profile, improve the safety of 

the application, decrease the level of expertise needed for 

application, and eliminate the risks and costs of sharps waste 

disposal. In addition, there is a reasonable potential that 

for certain types of vaccines, the dose needed for effective 

immunization using MNs may be significantly lower than if 

delivered via conventional application routes. Intramuscular 

and to some extent intradermal injection of vaccine bypasses 

the upper layers of skin and the skin’s immune system and 

delivers the vaccine into the immunologically less relevant 

areas, such as muscle and subcutaneous tissue. The skin, in 

contrast, is exceptionally rich in dermal dendritic cells and 

epidermal Langerhans cells, and provides efficient drainage 

to lymph nodes, thus making it a much more attractive site 

for vaccination.18,19 Such improved utilization and better 

pharmacokinetic profile of antigen(s) delivered may result 

in dose-sparing, which may be especially relevant in the case 

of urgent need of a large quantity of vaccines, eg, in the case 

of unexpected pandemics.20–26

Table 1 Vaccines and model antigens used in microneedle-based vaccine delivery trials

Proteins and inactivated viruses Virus-like particles Live viruses Bacterial antigens DNA

Influenza23,24,26–52 Influenza22,64–69 Adenovirus54,71,72 BCG76 Hepatitis B84,85

Ovalbumin53–57 HPV70 MVA72,73 Tetanus32 Hepatitis C86

BSA58 Measles74 Diphtheria32,43,77–79 Influenza27,87,88

Rotavirus59 Japanese encephalitis75 Botulism80 HIV71

HIV60 Malaria32 Smallpox89

Chikungunya virus61 Yersinia pestis80,81 Herpes simplex virus90,91

Rabies virus62 Staphylococcus aureus80

Hepatitis B63 Anthrax80,82,83

Abbreviations: BSA, bovine serum albumin; HPV, human papillomavirus; MVA, modified vaccinia virus Ankara; BCG, bacillus Calmette–Guérin; HIV, human immunodeficiency 
virus.

Vaccine delivery using 
microneedles: current status
Use of MN-based platforms for vaccination has been exten-

sively studied using a large number of model antigens and 

clinically relevant vaccines (Table 1). To date, by far the most 

studied have been possibilities for using MN platforms for 

influenza vaccination. This is more a reflection of the general 

focus of global vaccine research in recent years rather than the 

particular suitability of influenza vaccines for MN delivery 

compared with other pathogens.

Most studies were animal models, and very few human 

trials reports are available.45,48–51 It is generally accepted that 

major immunological findings obtained using appropriate 

animal models can in their essence be extrapolated to the 

expected results of future human studies.92,93 However, cer-

tain results derived from animal studies of MNs have to be 

evaluated keeping in mind differences in the structure and 

elasticity of animal versus human skin. For example, mouse 

skin is known to be more elastic than human skin, making it 

more resistant to MN penetration.43 If applicable, perhaps the 

best laboratory model for MN research is the use of human 

cadaver skin,39,67 albeit availability and regulatory require-

ments may dissuade one from this approach.

Despite outstanding research-and-development efforts, 

most of the MN-vaccine projects are still in the proof-of-

concept stage, with only a few pursued into clinical stages 

and even fewer resulting in licensed MN-based vaccines. This 

is partly due to the fact that a great amount of research in the 

MN field to date has been focused on the development of vari-

ous MN platforms and resolving numerous related technical 

issues rather than exploring clinically relevant applications of 

MNs. Furthermore, a major limitation of most of the available 

MN platforms seems to be the dose problem. The amount of 

vaccine that can be effectively delivered using MN devices 

remains fairly low, roughly estimated at approximately 1 mg 

of dry content for a small MN array, which in many cases 
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is insufficient to accommodate the required human vaccine 

dose.11,94 An obvious way to increase the dosage is to enlarge 

the MN array. However, increasing the array size brings addi-

tional technical challenges, increases production costs, and 

makes application less convenient. The maximum MN patch 

reported to date is a 25 cm2 array, containing approximately 

18,000 individual MNs.95

The dose problem is likely to be the main technical chal-

lenge to be resolved before we see more MN-based vaccines 

entering clinical phases of development. Therefore, it may be 

expected that in the short run, development of MN-mediated 

vaccines will be focused mainly on low-dose and/or self-

replicating vaccines, eg, tuberculosis vaccine or any of the 

live viral vaccines.

Microneedle platforms for vaccine 
delivery
Several diverse MN platforms have been developed to date, 

which can be divided into four groups based on their basic 

principle of operation (Figure 1). A great amount of techni-

cal skill and engineering ingenuity has been needed for the 

development of robust fabrication methods for such complex 

micron-scale devices. Especially challenging is the develop-

ment of MN-fabrication methods that have the potential to 

be economically scaled up and installed to pharmaceutical 

standards. This is still a very lively field of research, with 

new technologies and approaches emerging frequently. As 

discussed earlier, there are still a lot of technical issues to be 

resolved before we see more examples of successful scaling 

up of laboratory setups to the industrial level and transfer into 

the clinical stage of development. Recent advances in most 

promising MN platforms are discussed below.

Solid microneedles
The simplest form of MN devices are solid MNs, and most 

of the early work on MN-assisted delivery of vaccines 

was done using this type of MN. Solid MNs are usually 

70–800 mm long and arranged into one- or two-dimensional 

arrays, forming an MN patch. A large number of materials 

have been tested for fabrication of solid MNs, ranging from 

silicon and metal to nondegradable polymers and ceramics 

(for a review, see Kim et al11).

Solid MN patches can be used naked for skin pretreat-

ment, and when inserted onto the skin and removed they 

open pores in the skin surface. Drug or vaccine applied 

onto treated skin surface diffuses into the skin through pores 

created by MN pretreatment.73 This approach was used to 

immunize mice against diphtheria toxoid, giving satisfactory 

results, and influenza subunit vaccine, with less adequate 

response.43 Better humoral and cellular immune responses 

against hepatitis B DNA-based vaccine applied topically after 

skin scraping using solid MNs in comparison with intramus-

cular or intradermal vaccination by injection were seen in 

mice.85 Recombinant modified vaccinia virus Ankara (MVA) 

expressing a malaria antigen was administered to mice using 

a range of silicon MN patches with different MN height, den-

sity, patch area, and total pore volume. Interestingly, it was 

found that the design of MN patches significantly influenced 

Solid MN

Stratum corneum
Viable epidermis

Dermis

Hollow MNDissolving MNCoated MN

A

B

Figure 1 (A and B) Microneedle (MN)-based platforms for drug and vaccine delivery (reproduced with permission from Kim et  al11). Solid MNs pierce through the 
outermost layers of the skin, leaving open pores (A) after which drug/vaccine is delivered into the skin (B). Solid MNs may be used for skin pretreatment, after which drug/
vaccine is topically applied and left to diffuse into the skin through opened pores. An alternative way is to precoat the MN array with a formulation that dissolves off the MN 
patch upon contact with the skin (coated MN). Dissolvable MNs contain active ingredient incorporated into water-soluble biodegradable matrix that dissolves on contact 
with the skin and releases drug/vaccine (dissolving MN). Hollow MNs are used for direct injection of liquid formulation into the skin (hollow MN).

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Vaccine: Development and Therapy 2013:3submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

50

Vrdoljak

the magnitude and memory of vaccine-induced CD8+ T-cell 

responses and could be optimized for the induction of desired 

immune responses. Also, unlike administration using hypo-

dermic needles, MN-mediated vaccination did not induce 

inflammatory responses at the site of immunization or in 

draining lymph nodes.73

The other approach in using solid MNs for vaccine deliv-

ery is precoating of MN patches with water-soluble vaccine 

formulation before insertion into the skin. After application 

of such coated MN patches the vaccine is dissolved and 

released off the patch and into the skin, after which the patch 

is removed.

Precoating of solid MN arrays with a stable vaccine 

formulation incorporates drug and delivery device into 

a single delivery system, thus simplifying application. 

Techniques for precoating of MN devices include coating 

by repeated immersion,96–98 simple dip-coating,26,42,98 gas-jet 

dry-coating,99,100 coating using aerosolization,101 and spray-

coating.72,102,103

Vaccines coated onto solid MN patches include inacti-

vated influenza26,47,52,100,104 and Chikungunya virus vaccines,61 

virus-like particle-based influenza69 and human papilloma-

virus vaccines,70 hepatitis C,86 West Nile virus61 and herpes 

simplex virus 2 DNA vaccines,90,91 and live MVA and 

adenoviruses.72 In general, results using MN devices were 

comparable or superior to those obtained using intradermal 

or intramuscular routes of application.

Based on the declining proportion of publications 

describing the use of solid MN vaccine delivery devices 

in comparison with dissolvable and hollow MN platforms, 

it seems that these other options may start to dominate the 

field in upcoming years. However, some solid MN devices 

for vaccine delivery have shown promising results in the pre-

clinical stage, with clinical trials announced for 2013.47,105,106 

In addition, most current fabrication methods for dissolvable 

MNs rely on usage of polydimethylsiloxane molds, which are 

cast using solid MN arrays. Therefore, although the work on 

direct use of solid MN arrays for vaccination may be in slow 

decline, fabrication and design of solid MN arrays is likely 

to remain a matter of intensive research.

Hollow microneedles
Hollow MNs are miniature needles used for direct applica-

tion of liquid formulation into skin. There are two types of 

hollow MN designs. One uses a single MN, thus resembling 

a miniature conventional hypodermic needle. More often, 

hollow MNs are arranged into arrays, enabling simultaneous 

application of a vaccine formulation over a wider area of skin. 

This may allow not only faster application of the vaccine but 

higher bioavailability and antigen utilization as well, since 

a larger application area increases the chances of lymphatic 

uptake of antigens.107

The use of hollow MNs has the great advantage of 

enabling the use of liquid-vaccine formulations rather than 

vaccines in a dried form, as required by other MN platforms. 

Some vaccines cannot be presented in a dried form or may 

lose activity upon conversion into a dry state, making the 

use of hollow MNs the preferred choice. On the other hand, 

hollow MN devices usually require coupling with a syringe 

or other liquid container and perhaps assistance of trained 

personnel for application.108

To date, an influenza vaccine based on a single hol-

low MN system has been the most successful commercial 

application among the vaccine MN-delivery systems.109,110 

It is, however, debatable whether this system, marketed as 

BD Soluvia Microinjection System, is an MN or rather a 

short-needle system, given its 1.5  mm length compared 

with other MN devices that are regularly well below 1 mm 

in length.111 In one study, vaccination using such a single 

hollow MN device resulted in superior immunogenicity 

among elderly, which is particularly relevant, as morbidity 

and mortality from seasonal influenza is the highest in this 

population.50 Also important is the significant dose-sparing 

effect achieved using the MN device compared with the 

intramuscular vaccination route.45,49 The dose of 15 µg of 

hemagglutinin required for the intramuscular route was 

reduced to 9 µg for the MN device, giving superior immune 

response.29,49

The potential of using hollow MN arrays for vaccine 

delivery was also demonstrated by immunization with oval-

bumin and DNA-encoding reporter genes.112 Further, few 

clinically relevant vaccines have been successfully delivered 

using hollow MN devices in animal models. Vaccines against 

anthrax83 and Japanese encephalitis75 were successfully 

delivered and shown to be safe and efficacious.

Dissolvable microneedles
Most recently, a very promising approach for MN-mediated 

vaccine delivery was based on the use of dissolvable MN 

arrays. This platform first appeared in 2005,113 and has gained 

significant interest to date. The main idea behind dissolvable 

MN platforms is incorporation of vaccine into rigid poly-

meric or sugar MNs (for a review of fabrication methods, 

see Kim et al11). Upon insertion of dissolvable MNs into the 

skin, water evaporating from the opened pores dissolves the 

MN matrix and releases the vaccine, which then diffuses 
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easily into the skin. Materials used in the fabrication of the 

dissolvable MN matrix have to be inert, safe, water-soluble, 

sufficiently hard in dried form, and compatible with vaccine 

components.

Interest in dissolvable MNs seems to have increased in 

recent years, driven by the development of a number of dissolv-

able MN-production methods. These are mostly mold-based 

techniques, and include various casting, injection-molding, 

hot-embossing, diffusion-into-mold, spraying-into-mold, and 

similar techniques.111,114,115 Materials tested for suitability in 

the preparation of dissolvable MNs are indeed numerous. 

Most of these are various polymers or sugars. Polymers 

include carboxymethyl cellulose, chondroitin sulfate, poly-

vinylpyrrolidone, polyvinyl alcohol, poly(lactic-co-glycolic 

acid), dextran, and dextrin, while the sugars most used are 

trehalose, maltose, sucrose, and galactose (for reviews, see 

Prausnitz et al108 and Donnelly et al111).

The advantages of dissolvable MNs over other MN 

platforms are claimed to be cost-effectiveness, biodegrad-

ability, robustness, and scalability.111,114,116,117 Among the 

disadvantages, two issues may be problematic for certain 

types of vaccines. One is the already-discussed problem 

of the dose. The amount of vaccine that can be mixed 

with matrix components without compromising hardness 

and rigidity upon drying is fairly limited. Hence, the total 

amount of vaccine that can be accommodated in an average-

size dissolvable MN patch is measured on the milligram 

scale, which may be insufficient for many conventional 

human vaccines.108 The other problem related to incorpora-

tion of vaccine into a dry polymer/sugar matrix is stability 

of active component(s). Traditionally, many vaccines are 

stabilized in a dry form by freeze-drying. However, unlike 

structurally very fragile freeze-dried cake, the matrix of 

dissolvable MNs has to retain rigidity and hardness to 

enable penetration into the skin. The properties of such 

polymer/sugar matrix are very much different from those 

of freeze-dried forms, and finding a suitable combination 

of compatible and suitable matrix components may be 

problematic. Generally, the stability of protein antigens, 

including inactivated viruses, may be well preserved in 

certain dissolvable MN platforms,118 while the stability of 

live viruses is likely to be more challenging.114

Examples of successful embedding and delivery of 

vaccines using dissolvable MN platforms include plasmid-

encoding hepatitis C antigens,86 proteins,53–55,104,119 inacti-

vated influenza viruses,53,104,118,120 and live adeno- and MVA 

viruses.114 To date, there have been no reports on human 

trials using dissolvable MN vaccines. However, given the 

advantages of dissolvable MNs, in particular industrial scal-

ability and cost of production of dissolvable MN patches, 

encouraging results of preliminary animal studies, and 

liveliness in discovery of novel fabrication methods, it is 

likely that research efforts in this field will bring forth some 

vaccine products in upcoming years.

Prospects of microneedle-based 
vaccine delivery technologies
Research into MN devices is in its fourth decade already. 

Given the time span and amount of published data, it is 

somewhat surprising to see the relatively small number of 

commercial MN-based pharmaceutical products, and MN-

based vaccines in particular. The main reason is probably the 

fact that until recently, fabrication methods for MN arrays 

were not mature enough to be the basis of a robust and 

reproducible industrial process, needed in the pharmaceuti-

cal environment. Hence, the interest of the pharmaceutical 

industry in the research of MN devices was somewhat 

limited. Recently, however, with the introduction of micro-

electronic- and laser-based state-of-the-art methods into 

MN research, it has become possible to develop production 

methods that have the potential of scalability and translation 

of laboratory settings into a good-manufacturing-practice 

environment. Therefore, it can be expected that enormous 

efforts invested in design and fabrication methods of MN 

devices will finally start giving more clinically relevant 

results in this decade.

The other important reason that translation of MN-based 

vaccines into clinical use is still somewhat slow is the 

sole fact that in most cases, despite all the aforementioned 

disadvantages, traditional intramuscular or subcutaneous 

application of a vaccine results in a sufficient and reliable 

immune protection. The 100-year-long paradigm of needle- 

and syringe-based application of vaccines is simply not 

easy to put into question. However, the fact that current 

needle-and-syringe methods work fine may slow down an 

easy penetration of MN-based alternatives, but with further 

technological improvements, accumulation of data on effi-

cacy and safety, and paying more attention to the patient’s 

comfort, we are likely to see the introduction of a number of 

MN-based vaccines by the end of this decade.

To conclude, research on MN devices for vaccine delivery 

was until recently more about solving the design and fabrica-

tion issues, while now focus is swiftly changing to the use 

and application of MNs for delivery of clinically relevant 

vaccines. It is therefore to be expected that vaccination will 

soon start becoming a needle-free practice.
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