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Abstract: Cytomegalovirus (CMV), or human herpes virus 5, can cause a serious infection 

in immunocompromised patients. Primary infection can be vertical or horizontal – the lat-

ter includes transfusion-transmitted CMV (TT-CMV). The immune response against CMV 

involves both innate (eg, natural killer cells) and adaptive (humoral and cell-mediated) 

immunity. Through elaborate immune evasion mechanisms, CMV manages to stay latent, 

mainly in myeloid blood cells. T lymphocytes are mainly responsible for maintaining latency 

and preventing reactivation. In otherwise healthy individuals, the CMV infection is mild or 

subclinical. In immunocompromised patients (but also others), primary or reactivated CMV 

infection can cause significant disease. In addition to direct effects, a range of indirect effects 

– inflammatory, vasculopathic, etc – can be caused. Some of the indirect effects of CMV may 

be important even in immunocompetent but ill individuals. In immunocompromised patients, 

prophylaxis – either universal prophylaxis or preemptive treatment using antiviral drugs, such 

as ganciclovir against CMV – may be appropriate. The treatment of established CMV infection 

normally employs the same drugs. The role of intravenous immunoglobulin or CMV-specific 

hyperimmune globulin in prophylaxis and treatment is uncertain. New anti-CMV drugs, T-cell 

immunotherapy, and a vaccine are all being developed. From a transfusion medicine perspective, 

it is important to have a certain background knowledge of CMV, including: an understanding 

of its epidemiology; the immune response to it; and its clinical features. More specific areas of 

interest are blood donor selection using methodologies such as routine serology and, possibly, 

nucleic acid testing, to identify those who pose significant risks of TT-CMV. What are the ways 

of preventing TT-CMV even from potentially infective donors? The answer may, potentially, 

be achieved through leukoreduction and pathogen reduction technology.

Keywords: cytomegalovirus, transfusion, infection, Herpesviridae, reactivation, transfusion 

medicine, leucoreduction

Introduction
Human cytomegalovirus (CMV) or human herpes virus 5 is of interest to transfu-

sion medicine because it is transmissible through blood and because of the potential 

consequences of infection – both transfusion-transmitted CMV (TT-CMV) and reac-

tivation of infection – in a variety of patients. These patients include those who are 

immunocompromised, critically ill, simple transfusion recipients, or combinations of 

these. Also, the study of CMV provides insights into certain areas, such as immunol-

ogy, immunotherapy, and vaccine development, likely to interest transfusion medicine 

professionals. 

Apart from factors that are obviously relevant to transfusion medicine, such as 

ways to prevent TT-CMV, this review discusses other aspects of CMV – its history, 
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characteristics, epidemiology, and the clinical features of 

infection. The immune response to CMV, laboratory diag-

nosis, and treatment are also discussed briefly. Background 

material such as this is essential for a proper appreciation of 

the topic as it pertains to the speciality.

Brief history
German workers in the late 19th century first observed CMV 

infection, though it was not recognized as such. Initial reports 

described large intranuclear inclusions in postmortem tis-

sues. In 1925, Von Glahn and Pappenheimer first postulated 

that these inclusions might be the result of a viral infection. 

In the mid-20th century, these inclusions were seen in the 

cells from living patients. The term “cytomegalic inclusion 

disease” was coined, and electron microscopy of the inclu-

sions showed that it was a virus.1,2

In 1957, CMV was cultured from a patient who was 

suspected to have toxoplasmosis, the protozoal infection that 

also causes cytomegalic inclusion disease. Also, in the 1950s, 

a complement fixation test for the antibody to CMV was 

developed. Using this, several aspects of the epidemiology 

of CMV infection were worked out. CMV infection was 

found to be not only much more prevalent than believed, 

but it was also found that antibodies to CMV persisted life-

long and that the vast majority of infected individuals were 

asymptomatic.

From the 1970s, the increasing numbers of patients immu-

nocompromised following solid organ transplantation (SOT), 

stem cell transplantation (SCT), or human immunodeficiency 

virus infection/acquired immunodeficiency syndrome 

(HIV/AIDS) provided insights into the links between immune 

status and clinical CMV disease.

In the 1990s, pharmacological anti-CMV treatments 

started to be developed. In the last decade, adoptive immu-

notherapy and other experimental treatments for CMV 

are under investigation. These have followed a better 

understanding of how CMV infects the cells and mechanisms 

by which it stays latent and evades the immune system. 

These topics are well discussed by Ho1 and by Boeckh and 

Geballe.2

From a transfusion medicine perspective, the fact that 

blood can transmit CMV has long been known.3–5 Initially, 

CMV-safe blood meant donations from CMV-seronegative 

individuals. Because many adverse events related to 

transfusion, such as alloimmunization, febrile reactions, and 

TT-CMV, are due to the presence of white blood cells (WBC) 

in the transfusion, bedside (ie, poststorage) leucoreduction 

(LR) was introduced in the 1970s. 

Prestorage LR (a more effective method) was introduced 

in the 1990s. LR-blood is considered to be at least as CMV-

safe as that from CMV-seronegative individuals.

Biology of CMV
CMV is a double-stranded DNA virus and a member of the 

Herpesviridae family with characteristics, such as latency, 

common to them. From inside to outside, there is the DNA 

core enclosed within the nucleocapsid, that is surrounded by 

the protein tegument that is enclosed within a lipid bilayer 

membrane that incorporates a number of glycoproteins (g), 

(namely, gB, gH, gL, gM, gN, and gO). Tegument proteins, 

the most abundant of which is phosphoprotein 65, have struc-

tural and host immunomodulatory roles. The glycoproteins 

in the membrane are important for viral attachment and host 

cell penetration and are the targets for the host’s humoral 

immunity.7

CMV primarily infects mucosal epithelial cells. Then, 

dissemination to monocytic and other hemopoietic cells 

occurs where it remains latent, likely in myeloid lineage 

cells. The entry of CMV into host cells involves an initial 

interaction between CMV glycoproteins like gB and gH and 

a cell surface receptor, such as the platelet-derived growth 

factor α. Following entry, the nucleocapsid is uncoated and 

inserted into the nucleus. The CMV immediate-early genes 

1 and 2 are activated, leading to the replication of viral 

DNA and capsid assembly in the nucleus. After the new 

nucleocapsid egresses from the host cell nucleus, second-

ary coating with virally-encoded, host cell endoplasmic 

reticulum/Golgi complex-synthesized tegument proteins 

and membrane glycoproteins takes place before release of 

intact virus from the cell. 

Later, the differentiation of the monocytic precursors 

to macrophages results in productive infection. Virus is 

processed by professional antigen-presenting cells, such 

as dendritic cells (DC). Antigen presentation to T-cells 

leads to the development of cytolytic T-cells and, through 

T-B cooperation, the development of humoral immunity. 

Furthermore, activation of DC, and natural killer (NK) 

cells, through Toll-like receptors leads to the secretion of 

cytokines, such as interferons (IFN) α and β which activate 

innate immunity.6

Epidemiology of CMV
Infection comes from close contact with infectious 

individuals. Transmission can be vertical (transplacental from 

mother to fetus) or horizontal (through sexual intercourse or 

contact with fluids, such as saliva, urine, maternal genital 
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secretions, breast milk, or blood). It is also transmissible 

through SCT or SOT.

CMV seroprevalence in adults varies between countries 

from about 50% to nearly 100%.7 Seroprevalence is higher 

in lower socioeconomic groups, in females, and in older 

individuals.8 It is significantly higher in high-risk groups, 

such as male homosexuals.9 In developing countries, infec-

tion is usually acquired early; whereas, this occurs later 

in developed countries. Infection is lifelong. CMV stays 

latent in undifferentiated monocytes and is widespread in 

the body. Because they affect the proportion of potentially 

infectious donors, these epidemiological characteristics are 

important in transfusion medicine. CMV seroprevalence 

among blood donors is variable and, though a self-selected 

group, seroprevalence in the group tends to reflect that in the 

population at large.

Immunity to CMV
The immune response to CMV is complex. Briefly, both 

innate and adaptive immunity are involved.10 Discussion of 

the immune response to CMV would be incomplete without 

briefly discussing ways in which CMV survives the immune 

challenge and maintains latency.

The main effector cell in innate immunity is the NK cell. 

IFN α/β protect against viral infection in several ways. They 

prevent the infection of uninfected cells. They activate host 

cell genes responsible for enzymes that prevent translation of 

the viral genome and another which degrades viral mRNA. 

Furthermore, the IFN α/β recruit more NK and other cells, 

activate them, and upregulate the expression of major his-

tocompatibility molecules (MHC) on infected cells, making 

them susceptible to attack by these cells.11

Therefore, human CMV – through Toll-like receptors – 

induces the secretion of IFN α/β by NK cells and DC, further 

activating innate immunity. There is indirect and direct clini-

cal evidence for the role of NK cells in CMV infection. For 

instance, the NK cell activity increases during both primary 

infection and reactivation episodes postrenal transplant.12 It 

has been shown that the phenotype (activating or inhibitory) 

of killer cell immunoglobulin-like receptors and the C-type 

lectin receptors – the NK cell surface molecules that regulate 

its effector function – determine the incidence of CMV infec-

tion postrenal transplant.13 Finally, the NK cell deficiency has 

been associated with severe CMV infection.14

The antibody, alone or with complement, can neutralize 

free virus. Thus, the entry of CMV into the host cells and the 

cell-to-cell spread is prevented. The antibody can also act 

against virus-infected cells, both via complement-mediated 

lysis of infected cells or through antibody-dependent cel-

lular cytotoxicity mediated by NK cells, macrophages, and 

neutrophils.10

Though the window period using nucleic acid testing 

(NAT) may be considerably shorter, antibodies to CMV may 

take 4–8 weeks to develop. IgM anti-CMV antibodies are 

initially produced, followed by IgG, which persists lifelong. 

Their absence usually indicates a CMV-naive subject. 

The antigens targeted are primarily gB and gH6 but also 

the products of the UL128, UL130, and UL131A genes.2 

There is some evidence – both from animal and human 

studies – that antibodies to CMV may provide protection 

against reactivation.15,16 Furthermore, seropositivity usually 

indicates the presence of cell-mediated immunity (CMI) to 

CMV and vice-versa.17 There is some evidence that passive 

prophylaxis with anti-CMV antibodies can protect against 

infection in susceptible patients.18,19

However, neither polyvalent nor hyperimmune CMV 

intravenous immunoglobulin appears effective as passive 

prophylaxis against CMV infections post-SCT.20

The viral proteins produced and processed in the host cell 

cytoplasm are exhibited on the surface of infected cells in the 

peptide-binding cleft of ubiquitous, and highly polymorphic, 

class I MHC molecules. If the interaction between T-cell 

receptor and viral peptide-MHC class I complex is high 

affinity, this may result in T-cell activation.10

CD8+, CD4+, and γδ T lymphocytes all appear to play 

important roles in the long-term control of CMV. There is an 

association between specific depletion of these T-cells and 

the reactivation of CMV or CMV disease.21–24 Reconstitution 

of these subsets has beneficial effects on CMV infection.25–27 

Though CD8+ T-cells play the key role in the CMI against 

CMV,28 interestingly, CD4+ T-cells that are considered to 

play mainly supportive roles in CMI and humoral immu-

nity have themselves been shown to have cytolytic activity 

against CMV.29

A feature of the CD8+ T-cell response to CMV is the 

oligoclonality that gradually develops with specificities 

covering a few immunodominant CMV epitopes. Also, with 

increasing age, the proportion of this oligoclone increases – 

in contrast to what happens with the CD8+ T-cell response to 

other viruses – a phenomenon known as “memory inflation.” 

The memory inflation of CMV-specific CD8+ T-cell clones 

may be to the detriment of the immune response to other 

pathogens. The CD8+ T-cell clones involved in memory 

inflation have phenotypic and functional characteristics 

typical of T-cells of the effector-memory type, particularly 

in that they express CD45RA (hence being referred to as 
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TEMRA) and secrete antiviral cytokines and are capable 

of cell lysis.6,30

Immune evasion by CMV
CMV has evolved multiple strategies to evade the variety 

of immune responses against it and to maintain latency. 

CMV latency and reactivation are important considerations 

in transfusion medicine. It is neither possible nor necessary 

to cover all these mechanisms exhaustively in this review. 

A brief outline of the salient features will be provided; the 

interested reader is referred to three recent reviews of the 

subject.31–33 

Certain terms need to be defined. Latency is described as 

a situation where there is evidence of “viral DNA in tissues 

without transcription or translation of lytic or ‘late’ gene 

RNAs to protein and thereby absence of lytic virus. Reacti-

vation” is the “recovery of infectious virus following some 

period of viral latency.”34 

There is evidence for CMV latency in both mice and 

humans.34,35 CMV may go latent directly without produc-

tive infection or expressing any genes connected with 

it. Alternatively, a phase of productive infection may be 

followed by latency.

The examination of the CMV genes expressed during 

latency reveals that the full set – particularly, those necessary 

for viral replication – is not expressed. Additionally, there are 

genes that are expressed only during or just prior to latency 

and the products of those genes help to maintain that state.

Among the methods CMV uses to evade host immunity 

are antigenic variations36,37 that: block the presentation of 

CMV antigens by host cell MHC molecules; produce partial 

human IFN homologs that are predominantly immunosup-

pressive; and code for certain glycoproteins that prevent host 

IgG–fragment crystallizable region receptor binding, infected 

host cell apoptosis, IFN synthesis, and CMI.38–43

Consequences of CMV infection  
and relationship between  
immunity and clinical effects
Infection in the fetus (congenital CMV infection) may be 

severe and may cause thrombocytopenia and petechiae, liver 

function abnormalities, hepatosplenomegaly, intrauterine 

growth retardation, microcephaly, retinitis, and hearing 

loss. The IgM anti-CMV (of fetal origin since the maternal 

IgM cannot cross the placenta) may be found in the baby 

at birth. However, the severity of the infection is variable. 

Severe disease is more likely to follow the primary infection 

in a CMV-naive pregnant woman than reactivation of the 

infection in CMV-seropositive mothers who will, incidentally, 

form the majority in many countries. It is worth noting 

here that the consequences of primary CMV infection in 

neonates – including sick or preterm neonates (the groups 

mostly likely to require transfusions) – are unclear.44

Between 1.6%–3.7% of exposed, CMV-naive, pregnant 

women acquire primary CMV infection.45 However, even in 

CMV-seropositive pregnant women, the primary infection 

with a different strain of CMV can occur.46 Of primary CMV 

infections in pregnant women, 30%–40% will result in fetal 

infection, compared to 1% following the reactivation of pre-

vious maternal infection. Overall, about 10% of babies with 

congenital CMV infection are symptomatic.47 Since pregnant 

women can acquire primary infection through means other 

than transfusion (for instance, contact with young children 

who are excreting CMV in their urine), other hygiene mea-

sures may be required in this group.

Fetal infection – especially following primary maternal 

infection – may have serious consequences and acceptable 

treatments for CMV are unavailable in this setting. Because 

LR blood may still permit CMV transmission (though the 

risk is small), it may be prudent to use transfusions that are 

not only from CMV-seronegative donors but are also LR - at 

least for elective transfusions during pregnancy and for fetal 

transfusions even though these are rarely required.48

Infection in well-immunocompetent subjects, including 

children, may remain subclinical or, at worst, result in a mild 

illness (mononucleosis syndrome similar to that caused 

by the Epstein–Barr virus, another human herpes virus), 

characterized by pharyngitis, myalgia, fever, and sometimes 

mild hepatosplenomegaly, lymphadenopathy, and atypical 

lymphocytes in the blood.49,50

In immunocompromised subjects, infection can have 

serious consequences. Those at greatest risk are those with 

impaired CMI, such as fetuses, premature, sick, or low birth-

weight infants, those undergoing SCT, SOT, or certain other 

treatments, and individuals with HIV–AIDS.

Among such patients, CMV infections can occur in those 

who are CMV-naive or those in whom initially asymptom-

atic infection is reactivated. CMV is a cytopathic virus and 

infection – either primary or reactivation – and in the immu-

nocompromised can affect many tissue systems. Pneumonitis, 

gastroenteritis, retinitis, hepatitis, etc, are all well described. 

In these patients, primary infections are usually more severe 

than reactivations. This is an important point in transfusion 

medicine.

In allo-SCT, the highest risk of CMV disease is in 

CMV-seropositive patients followed by CMV-naive patients 
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receiving a CMV-seropositive SCT (donor [D]+recipient 

[R]- SCT). The proportions of this and other combinations 

will vary with CMV seroprevalence in different populations. 

In allo-SCT patients, the severity of chronic graft versus host 

disease (GVHD) – through immunosuppression, and perhaps 

some of the indirect effects discussed – also affects the risk 

of CMV infection. Because it may be possible to choose SCT 

donors based on the CMV serostatus, it may be advantageous 

to choose CMV-seropositive donors for CMV-seropositive 

patients (D+R+ SCT) because of a possible lower risk of 

CMV reactivation and CMV-naive donors for CMV-naive 

patients (D-R- SCT).51 With D-R- SCT, the risk of CMV 

disease is low. In this group, the main threat is posed by 

blood transfusions. LR is considered sufficient, and CMV-

seronegative blood is not required for SCT patients.48

Patients with hematological or other malignancies 

receiving conventional chemotherapy or radiotherapy, or 

patients on immunosuppressants for other reasons, are not 

immunocompromised enough to be at particular risk. Treat-

ment for chronic lymphocytic leukemia and non-Hodgkin 

lymphoma with purine analogs (eg, fludarabine) or alemtu-

zumab (anti-CD52, Campath®; Genzyme Corp., Cambridge, 

USA) that result in very low CD4+ and CD8+ counts, and, 

possibly, antithymocyte globulin52 may be exceptions, but 

not rituximab (anti-CD20) which affects B-cells.53 These 

patients may develop a range of infections, including CMV. 

Nevertheless, for patients on all these treatments, including 

purine analogs or alemtuzumab, standard or LR blood (if 

universal LR operates) suffices.

With SOT, the highest risk is with the D+R– combination. 

In addition to the serostatus of the patient and the donor, the 

risk is influenced by the organ transplanted and the degree of 

immunosuppression. Risk is the highest with lung transplants 

(because of the load of potentially infected monocytes in 

the lung, the level of immunosuppression required, and the 

seriousness of CMV pneumonitis in the transplanted lung), 

followed by the small intestine and the pancreas. Liver and 

kidney transplants pose a much lower risk.54

In SOT patients, in addition to nonspecific illness with 

fever, leukopenia, and transaminitis, specific end-organ 

disease – particularly in the transplanted organ itself – may 

occur.55 One effect of this is the higher risk of allograft rejec-

tion in SOT patients with CMV disease than in those without.56 

The pathophysiology of this allograft rejection appears to be 

related to CMV-mediated vasculopathy.

Despite the serious consequences of CMV infection, 

because of the shortage of certain organ donors, CMV 

serostatus is a secondary concern in the SOT setting. In 

SOT, as with allo-SCT, the risk of CMV disease is low with 

D-R- transplants. Such transplants are a good indication for 

CMV-safe blood to avoid primary infection. LR is considered 

sufficient, and CMV-seronegative blood is not required for 

SOT patients.48,57

CMV disease in HIV–AIDS patients is a serious illness. 

Retinitis and gastrointestinal tract involvement are especially 

common. Patients who are most likely to be affected are those 

with low CD4+ counts and high viral loads, conditions that are 

now likely to be found only in those not on, or those who are 

unresponsive to, antiretroviral therapy.58 Most CMV disease 

in this group is due to reactivation of infection in previously 

seropositive individuals. As noted, CMV seroprevalence is 

very high in some HIV risk groups. LR is sufficient and CMV-

seronegative blood is not required for HIV–AIDS patients.48

Finally, it is increasingly being recognized that CMV, in 

addition to causing direct cytopathic effects due to active, lytic 

CMV replication, can – both in its active and latent forms 

– cause clinically significant and apparently contradictory, 

immunopathological, and indirect effects. Broadly, these are 

considered under CMV-related immunosuppressive, autoim-

mune, inflammatory, and vasculopathic categories.59,60

Immunosuppression – related to the methods CMV 

uses for immune evasion (see “Immune evasion by CMV”) 

together with that secondary to immunosuppressive agents 

in SOT and SCT patients – may cause superinfections with 

various bacteria or fungi and is associated with reactivations 

of other viruses.61–63

CMV can trigger autoimmunity. A wide variety 

of autoimmune conditions and phenomena have been 

described in association with CMV. These include post-SOT 

type I (autoimmune) diabetes mellitus, cryoglobulinemia, 

antiphospholipid antibodies, scleroderma, systemic lupus 

erythematosus, and cytoplasmic antineutrophil cytoplasmic 

antibodies-positive vasculitis.64–67 Significantly, some of 

these autoimmune conditions have improved with anti-CMV 

treatment.68 How CMV induces autoimmune phenomena 

is imperfectly understood. Mimicry by viral proteins of 

human proteins and polyclonal B-cell activation – directly or 

indirectly – are among the mechanisms proposed.60

Regarding inflammation, it is unclear if CMV replication 

is its cause, its effect or, if the two are merely coincidental. As 

an illustration, consider that the CMV replication in myeloid 

precursors is associated with maturation to macrophages and 

DC. Cytokines, such as tumor necrosis factor-α and IFN-γ 

from these cells, activate parts of the CMV genome that helps 

to start viral replication, which leads to further maturation of 

the host cells that are associated with inflammation.59

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Clinical Transfusion Medicine 2014:2submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

12

Badami

Evidence for the role of CMV in vasculopathy comes 

from laboratory, epidemiological, and clinical sources.69 It 

has been shown in SOT that even subclinical CMV infec-

tion may lead to chronic endothelial dysfunction in both 

transplanted organ and systemic vasculature70 and may cause 

increased overall and cardiovascular mortality.71 Aggressive, 

universal, compared to preemptive, CMV prophylaxis post-

heart transplant ameliorates cardiac allograft vasculopathy.72 

Mechanisms by which CMV causes vasculopathy involve 

complex, not fully understood, and apparently contradictory 

interactions with the host immune system.

Among these are: the activation of the transcription 

nuclear factor kappa B by CMV entry into host endothelial 

cells leading to CMV replication in the cell; release of the 

cytokines by the immune cells following CMV infection lead-

ing to upregulation of adhesion molecules and human leuko-

cyte antigen (HLA) II expression on endothelial cells; vessel 

wall smooth muscle proliferation caused by CMV cytokine 

homologs; reduced endothelial nitrous oxide synthesis; and 

inflammatory responses within the graft. The clinical effect 

of all of this is not only local and systemic vasculopathy, but 

it is also an increased allograft rejection.69

It is now recognized that, through many of the above 

mechanisms, CMV causes significant adverse effects in criti-

cally ill but immunocompetent patients. Temporary immu-

nocompromise may occur during critical illness, and such 

patients can have CMV reactivations. Equally, it is believed 

that stress or catecholamines, bacterial sepsis, or other 

causes of inflammation and WBC in transfusions can trig-

ger reactivations. Also, it is possible that CMV reinfection, 

through transfusions or other sources, can occur in such 

patients. Consequences of CMV reactivation or reinfection 

in such patients include increased mortality, ICU length of 

stay, mechanical ventilation duration, and acute respiratory 

distress syndrome.73,34

Laboratory features of CMV  
infection and disease
The following is not a comprehensive discussion of this topic 

for which the reader is referred to an excellent review.74 Only 

those points of particular relevance to transfusion medicine 

will be mentioned here.

The first point is that different definitions apply to CMV 

infection, disease, and their subcategories. CMV infection is 

a generic term that covers viremia, antigenemia, DNAemia, 

RNAemia, and seropositivity. Each of these terms is defined 

more precisely. In general, demonstrating the virus itself, its 

antigens, or its nucleic acids – with or without either IgM or IgG 

anti-CMV – suggests active infection. “Primary CMV infec-

tion” refers to the presence of CMV antibodies in a previously 

seronegative individual. Reinfection or reactivation is a new 

CMV infection in a previously infected individual without 

the virus being detected for at least 4 weeks, despite active 

surveillance. CMV disease definitions depend on the clinical 

features that vary with the end organ affected plus, in general, 

the demonstration of CMV in the organ, tissue, or fluid con-

cerned, by viral culture, histopathology, immunohistochemistry, 

in situ hybridization, antigenemia (eg, through phosphoprotein 

65 assay [pp65 assay]), or polymerase chain reaction (PCR). 

The last, alone, may be too sensitive to confirm CMV disease 

in a particular location reliably.55 However, quantitative PCR is 

very useful for another purpose – to estimate the viral load and 

to determine if a threshold has been reached that would trigger 

preemptive anti-CMV treatment in SCT or SOT patients (see 

“Prevention and treatment of severe CMV disease”).

The second point is that, with respect to CMV infection, 

different aims and strategies apply to immunocompromised 

patients and to immunocompetent individuals, such as blood 

or organ donors. In the former, the aim post-transplant is to 

determine if there is an active infection, though serostatus 

will have been determined pretransplant too. CMV serostatus 

may be difficult to evaluate in babies because of the passive 

transfer of maternal anti-CMV and in pretransplant patients 

because of recent transfusions. Potentially, it may be possible 

to determine CMV infection status in such patients using 

CMV-specific T-cell assays.75

Pa t i en t s  w i th  a c t ive  i n f ec t i on  a r e  mos t ly 

immunocompromised. In them, antibody responses are 

poor or delayed, and CMV serology has no role. The clinical 

presentation of active infection, at a given time, varies from 

asymptomatic to nonspecific illness to significant, specific 

end organ effects.

In immunocompetent individuals, the aim is to determine 

if there is a history of infection, estimate time of infection, 

and so make deductions about infectivity (see “Prevention 

of CMV transmission through transfusion”). This is done 

through testing for CMV serostatus. IgM, or low-avidity IgG, 

anti-CMV indicates primary CMV infection, while high-

avidity IgG anti-CMV indicates an infection that occurred 

more than 2–4 months previously. Enzyme-linked immu-

nosorbent assay (ELISA) is the most commonly available 

test, but immunofluorescence, indirect hemagglutination, 

and latex agglutination assays are also available.76 Validated 

ELISA has sensitivity .99.5% and specificity .98.1.48

Because of the importance of T-cells in CMV control, 

assays are being developed that help to determine the level 
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and functionality of CMV-specific CD4+ and CD8+ T-cells 

in patients who are post-SOT. This, then, is used to identify 

at-risk patients and to guide prophylaxis.54,77

Prevention and treatment  
of severe CMV disease
Apart from general measures, such as CMV-safe blood trans-

fusions (see “Prevention of CMV transmission through trans-

fusion”) in at-risk SOT and SCT patients, other prophylactic 

measures are required to prevent CMV disease secondary to 

infection originating in either the patient or the transplanted 

organ or tissue.

Prophylaxis is generally of two types. With universal 

prophylaxis, antiviral agents, such as acyclovir, valacy-

clovir, ganciclovir, or valganciclovir, are given to the sub-

groups of patients at high risk; for example, it is given to 

SOT or SCT involving the D+R– or sometimes D+R+ 

combinations to prevent primary or reactivation infection. 

This approach results in unnecessary treatment for many 

– increasing toxicity, cost, and viral resistance. On the 

other hand, the preemptive treatment approach employs 

regular screening – viral culture, antigenemia assays, or 

PCR – to determine the level of viremia to predict those at 

the highest risk of developing CMV disease. At an appro-

priate viremia threshold, treatment is started with, usually, 

valganciclovir with the aim of taking viremia level down 

to a certain target.

Treatment of established CMV disease, such as pneu-

monitis, retinitis, etc, requires pharmacologic and other 

treatment, reduction in the level of immunosuppression. 

Intravenous ganciclovir (or oral valganciclovir, or cidofovir 

or foscarnet) together with intravenous immunoglobulin or 

CMV-specific hyperimmune globulin are usually used.51,54,78 

The role of immunoglobulin, whether pooled or CMV-spe-

cific – in addition to ganciclovir for preventing CMV disease 

– is controversial, especially in SCT.79 However, there may be 

a role for this post-SOT; for instance, there may be a role to 

reduce some indirect effects, such as allograft rejection and 

cardiac allograft vasculopathy postheart transplant.80

Experimental treatments – drugs such as CMX 001, 

AIC 246, maribavir,81 and adoptive immunotherapy to 

restore an immunocompromised patient’s CMV-specific 

T-cells – have been subjects of intense study. Problems with 

adoptive immunotherapy include: time required to generate 

clinically relevant T-cell expansion in vitro; failure to obtain 

sustained CD8+ cytotoxic T-lymphocyte responses in vivo 

without concomitant CMV-specific CD4+ immunotherapy; 

and concerns about the use of live CMV for generating 

CMV-specific T-cells in vitro. Various strategies to overcome 

these are being developed and are well discussed by Crough 

and Khanna.6

Prevention of CMV transmission  
through transfusion
Obviously, the best way of reducing TT-CMV, as with other 

transfusion-related adverse events, is through conservative 

transfusion practices. More specifically, the initial method 

of reducing TT-CMV in high-risk groups was by selecting 

CMV-naive blood donors. Though this, compared to those 

receiving standard, unselected blood components, was shown 

to significantly reduce CMV infection in two randomized 

studies (including in D-R- SCT patients)82,83 clearly it does 

not eliminate TT-CMV. One explanation may be infections 

from seronegative, but potentially infectious, window phase 

donors.

Indeed, it has been demonstrated that 12%–62% of 

recent seroconverters had evidence of CMV DNA in 

plasma, depending on the interval between testing and the 

last seronegative result; whereas, 0% of those who had 

been CMV-seropositive for more than a year had evidence 

of this.84 Though false negative reactions are rare, and the 

sensitivity of ELISA for CMV is high, they do occur.85–87 

False negative serological reactions may be due to technical 

reasons, antigenic heterogeneity in CMV,88 or because some 

individuals are poor antibody responders. It has been known 

that more than one-half of CMV-seronegative individuals 

have CMV DNA.89

On the other hand, there are individuals who are 

CMV-seropositive but noninfectious; these may constitute 

the majority of blood donors.90 If CMV-seronegativity is 

considered the only true marker of CMV-safety, then in 

countries with high seropositivity rates, there may be a very 

limited availability of CMV-safe blood donors.

In fact, it has been demonstrated that individuals who 

are CMV-seropositive but who have latent (ie, not recent) 

infection mostly do not have CMV DNA detectable in their 

plasma.84,91 In contrast, as noted, some CMV-seronegative 

individuals (in the window phase) may, in fact, have CMV 

DNA detectable in their blood.

From the mid-1980s, studies in at-risk (CMV-naive) neo-

nates showed that LR of red blood cell (RBC) transfusions 

might help to prevent TT-CMV. Of course, reducing TT-CMV 

was not the sole, or even the main, objective of LR. Many 

other actual or potential benefits of LR have been described. 

These include: reduced febrile nonhemolytic transfusion 

reactions; 92,93 alloimmunization to HLA and other antigens, 
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and – consequently – platelet refractoriness;94–97 transfusion-

related immunomodulation that may predispose to viral 

or bacterial infections and tumor recurrence;98,99 possible 

transfusion-associated GVHD, post-transfusion purpura;100 

and transfusion-related acute lung injury;101,102 and transmis-

sion of various blood cell-associated pathogens,103 including 

variant Creutzfeldt-Jakob disease, human T lymphotropic 

virus type I, and HIV.104–109 The impetus for introducing LR 

has been varied. In some countries, it was variant Creutzfeldt-

Jakob disease; in others, it was transfusion-related immu-

nomodulation. In yet others, it was overall transfusion  

safety.110

With respect to CMV, reports from the 1980s sug-

gested that frozen-thawed-deglycerolized RBC and saline-

washed RBC respectively achieved significant degrees 

of LR and helped reduce TT-CMV, compared to standard 

transfusions.111,112 Later studies in neonates described the 

use of LR filters for this purpose.113,114

Early LR filters removed 90%–99% (1–2 log
10

) WBC, but 

the current third and fourth generation filters remove $99.9%–

99.99% (3–4 log
10

) WBC.115 Assuming a WBC count in a 

donor of 5 × 109/L, a unit of whole blood (400 mL) will con-

tain about 2 × 109 or 2,000 × 106 WBC. Thus, LR of this unit 

of whole blood using current filters would leave a residue of 

#2 × 106 WBC or #0.1% of the WBC originally in the unit. 

Currently, in American guidelines, LR means achieving a 

WBC count of #5 × 106 with $85% RBC recovery in $95% 

of units or, in European guidelines, #1 × 106 WBC/unit.116 

Evidence for these thresholds relates more to the prevention 

of HLA-alloimmunization and less to preventing TT-CMV.

Direct evidence for the effectiveness of LR in human blood 

was provided by the study of Dumont et al,117 who examined 

residual levels of CMV DNA by quantitative PCR, follow-

ing filtration (RBC and platelets) and in apheresis platelets. 

They found significant reductions (median: 2,400 genome 

equivalents/mL pre-LR to 500 genome equivalents/mL 

post-LR) with, and no significant differences between, the 

three methods.

Several small studies in at-risk adult patients provided 

data on the effectiveness of LR for reducing TT-CMV.118–125 

With the exception of one, these were nonrandomized 

studies. Patients in the test groups who had hematological 

malignancies or bone marrow failure were undergoing either 

conventional therapy or SCT (allo-SCT or auto-SCT) and 

were given either pre- or poststorage LR blood components. 

Controls were patients with either the same conditions or 

nonhematological malignancies, given either unscreened, or 

CMV-seronegative, blood components.

Furthermore, various CMV diagnostic tests were used, 

and CMV preemptive treatment was not uniformly given. No 

definite conclusion can be drawn from these heterogeneous, 

mostly retrospective, studies other than that they provide 

some evidence for the utility of LR in reducing TT-CMV in 

these settings.

In 1995, Bowden et  al126 reported a landmark trial in 

which CMV-naive, allogeneic, and autologous SCT patients 

were randomized to receive either LR or CMV-seronegative 

blood components. They found no significant difference 

between the two as far as CMV infection, disease, or overall 

survival between day 21 and day 100 post-transplant (the time 

span chosen to avoid including infections acquired prior to 

the start of the study) were concerned and concluded that the 

two types of blood component were equivalent.126 However, 

a secondary analysis of events between day 0 and day 100 

post-transplant showed that, though infection rates between 

the two groups was similar, the likelihood of disease in the 

LR group was higher.

As explanations for this, the authors suggested reactiva-

tion of prior but latent infection, filter failure, and the pos-

sibility that a higher frequency of repeated family member 

donations in the LR arm may have exposed patients in that 

arm to particularly infectious donors.

This study has been criticized on the grounds of: being 

underpowered to detect a difference between groups trans-

fused with CMV-seronegative components and those given 

LR components; for including autologous SCT patients who 

may have been at lower risk of CMV infection and disease; 

for using bedside filters that may have been a less effective 

way of LR; for protocol violations that were nevertheless 

included in the analysis; and for the lack of effective CMV 

surveillance and preemptive therapy.

Other cautionary notes regarding the effectiveness of 

LR – at least with respect to TT-CMV – were also struck. 

First, James et  al127 suggested that free CMV in plasma, 

presumably derived from the breakup of white blood cells 

in storage and not removable by LR, might potentially cause 

TT-CMV. Up to this point, many of the LR filters in use were 

bedside filters.

The second was by Nichols et  al124 in a report of a 

nonrandomized study in 2003. They examined 807 CMV-

naive SCT patients, in whom the incidence of TT-CMV was 

assessed weekly, using the phosphoprotein 65 antigenemia 

assay during two time periods. In one, only CMV-seronega-

tive and/or LR blood components were used; in the second, 

LR platelets obtained by apheresis without filtration were 

also used. In these patients, a significantly higher frequency 
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of TT-CMV was found in the second, compared to the first, 

period.

Then, in an overview of the reports by Bowden et al,126 

Pamphilon et al,123 and Nichols et al,124 the first two showed 

that, with respect to TT-CMV, LR blood was equivalent to 

CMV-seronegative blood; the third showed the opposite, 

Vamvakas128 found that CMV-seronegative blood reduced 

the risk of TT-CMV by 60%, compared to LR components. 

However, it included the results of Pamphilon et al123 and 

Nichols et al where confounding (eg, the group getting LR 

components was also the group that received the most trans-

fusions) was a significant problem.124

Recently, the LR versus CMV-seronegative debate has 

been reopened. Ziemann et al,129 using nucleic acid testing, 

found that CMV DNA was much more likely to be found in 

the early seroconversion phase than in either the true window 

period or in remote seroconverters.

Similarly, Furui et  al,130 in a study of Japanese blood 

donors, showed that CMV DNA was most likely to be found 

in the relatively elderly and in those who were anti-CMV 

IgM+/IgG− (ie, recent seroconverters). They linked these 

findings to reactivations of latent infection in older donors. 

Moreover, they found CMV in the plasma fraction post-LR, 

like Dollard et al131 who found that another human herpes 

virus (human herpesvirus 8, which is associated with Kaposi’s 

sarcoma and a few other conditions) could be found cell-

free, post-LR.

Therefore, Roback and Josephson132 make the point that 

neither CMV-seronegativity nor LR may provide absolute 

protection against TT-CMV. Neither does the approach of 

using stable CMV-seropositive (seropositive .1 year) blood 

donors without LR84 provide this because of potential CMV 

viremia during reactivations.

They propose four alternative types of components to fur-

ther reduce the risk of TT-CMV: 1) from CMV-seronegative 

donors subjected to LR; 2) from CMV-seronegative and 

CMV NAT-negative donors (without LR); 3) from CMV-

seronegative and CMV NAT-negative donors subjected to 

LR; and 4) from CMV NAT-negative donors subjected to 

LR. While 3) would obviously provide maximal protection, 

it would also significantly curtail the pool of available donors. 

They conclude that perhaps 4) may be the best of these four 

options and wonder if pathogen reduction (PR) may be the 

way forward, replacing all these various strategies.

PR is a proactive and more or less global way of dealing 

with transfusion-transmitted infections, including CMV. 

Agents such as psoralen S-59 that intercalate pathogen 

nucleic acids when exposed to ultraviolet light are used.133 

To quote Vamvakas and Blajchman,134 PR would mean that 

“rather than this agent-by-agent reactive approach, there could 

be a more all-encompassing approach to blood safety that 

would address most transfusion-transmitted pathogens … .” 

PR systems have been demonstrated to be effective against 

CMV specifically.135

In addition to the effect on pathogens, the same agents, 

because of their effect on nucleic acids in general, are at 

least as effective as γ-irradiation against the lymphocytes 

that may cause transfusion-associated GVHD.136 Two RCTs 

have demonstrated equivalence, if not superiority, of platelet 

transfusions prepared with PR to standard (LR) platelets 

with respect to clinical and the laboratory endpoints.137,138 

One significant drawback of PR is that, currently, they are 

inapplicable to RBC, meaning that the non-PR methods will 

continue to be required for RBC transfusions, making PR an 

addition to current measures against transfusion-transmitted 

infections rather than an outright replacement to them. Other 

drawbacks include ineffectiveness against prions and certain 

other pathogens, and some cellular losses that may result in 

patients having to receive additional transfusions.138

Finally, though strictly not belonging in this section, it will 

be useful to mention vaccines against CMV briefly. These 

vaccines have been in development for many years, but no 

licensed product is available yet. Several areas of uncertainty 

have slowed development. The candidate population – healthy 

women preconception or patients awaiting SCT or SOT – 

is unclear. Within target populations, it is unclear if those 

who are CMV-naive, those who are CMV seropositive, or 

both, should be candidates. Which CMV antigens should 

be targets? Also, it is uncertain what constitutes immunity – 

is  this humoral or cellular immunity or both? Last, how 

should the vaccine be delivered? Clearly, a desired level of 

immunity needs to be achieved without causing CMV infec-

tion. The interested reader is referred to two recent reviews 

where these, and related matters, are comprehensively 

discussed.139,140

Conclusion
CMV has attracted the attention of transfusion medicine 

professionals for a long time. Our engagement with CMV 

is far from over. This has provided insights into many fields, 

especially human immunology. As far as this speciality is 

concerned, areas likely to be of future interest include: the role 

of TT-CMV in immunocompetent but ill patients; the further 

delineation of the role of CMV intravenous immunoglobulin 

in SOT patients; PR that will be applicable to RBC, in addi-

tion to platelets and plasma; and the further development 
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and refining of pharmacologic agents that target CMV at the 

cellular and molecular levels and of vaccines.
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