
© 2015 James and Griffith. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Research and Reports in Biochemistry 2015:5 1–10

Research and Reports in Biochemistry Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
1

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/RRBC.S59123

Tumor necrosis factor-related apoptosis-inducing 
ligand-induced apoptotic pathways in cancer 
immunosurveillance: molecular mechanisms  
and prospects for therapy

Britnie R James1

Thomas S Griffith1–4

1Department of Urology, 
2Microbiology, Immunology, and 
Cancer Biology Graduate Program, 
3Center for Immunology, 4Masonic 
Cancer Center, University of 
Minnesota, Minneapolis,  
Minnesota, USA

Correspondence: Thomas S Griffith 
Department of Urology, University of  
Minnesota, 3-125 CCRB, 2231 6th St SE, 
Minneapolis, MN 55455, USA 
Tel +1 612 624 8269 
Fax +1 612 626 0428 
Email tgriffit@umn.edu

Abstract: Since first described in 1995, tumor necrosis factor-related apoptosis-inducing ligand 

(TRAIL) has generated considerable interest as a cancer therapeutic because of its ability to 

induce apoptosis in a range of tumor cell types while having little activity on normal cells and 

tissues. Since then, the vast majority of studies published on TRAIL and anti-TRAIL receptor 

monoclonal antibodies have focused on the tumoricidal activity of these molecules, with the 

intention of developing TRAIL-receptor agonists into potent cancer therapeutic agents. As 

promising as these agonists have proved to be in vitro and in various in vivo preclinical models, 

there have been a number of obstacles identified likely contributing to the underwhelming clini-

cal trial data obtained – including a high frequency of TRAIL-resistant tumors – and reduced 

excitement about using TRAIL-receptor agonists as monotherapy for cancer. Consequently, 

it is important to understand the various mechanisms used by tumor cells to maintain TRAIL 

resistance and develop novel combinatorial approaches to restore TRAIL sensitivity in tumor 

cells. This review highlights the complexities of the TRAIL–TRAIL-receptor system, explores 

various methods for inducing TRAIL-induced death of tumor cells, and discusses some of the 

mechanisms that regulate tumor resistance to TRAIL and the way in which this resistance can 

be countered.
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Introduction
The process of cell death plays an essential natural physiological role in removing 

cells of the body that are produced in excess, diseased/damaged, or have completed 

a defined function. In the broadest sense, there are two means by which cell death 

can occur that are defined by classical biochemical and morphological criteria.1–3 One 

mechanism of cell death, “necrosis”, is typically induced by injury or a traumatic 

event, leading to the inability to maintain cell-membrane integrity and eventually the 

violent rupture of the cell(s).4 Necrosis generally leads to uncontrolled release of cel-

lular components that can initiate an inflammatory response when it develops in vivo. 

“Apoptosis”, the other means by which cell death can proceed, is a more “civil” means 

of death characterized by numerous cellular changes that limit the release of cellular 

components with inflammatory potential.3

Apoptosis is an essential process in a number of basic physiological events and 

is regulated by many intracellular and extracellular cues.5,6 Tight control of this 
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process is, obviously, critical to the survival of the organism, 

as evidenced by the studies from Hengartner and Horvitz 

describing the detailed apoptotic cell death that occurs in the 

nematode Caenorhabditis elegans.7,8 Failure of the apoptotic 

process has been implicated in certain autoimmune diseases 

(eg, autoimmune lymphoproliferative syndrome [ALPS]),9,10 

but cancer is probably the best-studied disease state linked to 

a defect in the apoptotic cell death process.6 The identification 

and development of novel therapeutic agents that target the 

apoptotic pathway, through direct induction or counteracting 

resistance mechanisms, in tumor cells has become a focus of 

many laboratories around the world. Although there are many 

mechanisms that can ultimately result in cellular apoptosis, 

some of the best characterized are those induced through an 

active, instructive process mediated by the death receptors 

(DRs) of the tumor necrosis factor (TNF) receptor superfam-

ily and their respective death ligands.11 These DRs are char-

acterized by cysteine-rich extracellular domains,12,13 and a 

cytoplasmic sequence (termed the “death domain” [DD]) that 

serves as the aggregation point for the proteins that initiate the 

apoptotic signaling machinery.13–15 A variety of immunologi-

cal functions are under the control of the corresponding death 

ligands in the TNF superfamily, with TNF and Fas ligand 

(FasL) being two of the most studied. Activation-induced 

cell death of lymphocytes, autoimmunity, maintenance of 

immune privilege, and tumor immunosurveillance are highly 

dependent on the proper expression and function of the TNF/

TNF receptor and FasL/Fas pathways.16–20 However, interest 

in developing TNF and FasL as cancer therapeutics decreased 

significantly with reports describing life-threatening toxicity 

associated with the systemic administration of TNF and FasL 

(or anti-Fas monoclonal antibody [mAb]).21,22

Another member of the TNF superfamily capable of 

inducing apoptosis is tumor necrosis factor-related apoptosis-

inducing ligand (TRAIL), which was first identified after a 

screen of an expressed sequence tag database using a con-

served sequence within a number of TNF family members.23 

A similar approach was used by Pitti et al, who designated their 

discovery “Apo2 ligand” (Apo2L) due to its close homology 

to the Fas/apolipoprotein (Apo) 1 ligand.24 As with other TNF 

superfamily members, multimeric (or cross-linked) TRAIL is 

the most biologically active form, rather than monomeric.23 

Early studies investigating the biology of TRAIL revealed 

two characteristics that were unique compared with other 

TNF superfamily members. First, TRAIL messenger RNA 

(mRNA) is constitutively expressed throughout the body.23 

In contrast, the expression of other TNF superfamily mem-

bers is tightly regulated and often transient. It has been 

hypothesized that TRAIL expression on cells within the 

immune system is critical in the immune system’s ability to 

eliminate nascent tumors, and there is increasing evidence 

supporting the role of TRAIL-induced death and/or immune 

cell activation in the efficacy of immunosurveillance of 

tumors. Studies using TRAIL-deficient mice and TRAIL-

neutralizing antibodies have confirmed a role for TRAIL-

induced death in controlling the progression of tumors and 

contributing to antitumor immunity.25–28 Second, unlike 

TNF and FasL, TRAIL preferentially induces apoptosis in 

transformed cells, while demonstrating little-to-no cytotoxic 

activity against normal cells and tissues.23 A number of 

subsequent reports have confirmed that malignant cells are 

the primary targets of TRAIL in vivo.29–33 Cells undergoing 

TRAIL-induced death exhibit many of the same canonical 

hallmarks of apoptosis induced by TNF or FasL, including 

DNA fragmentation, rapid expression of phosphatidylserine 

on the cell membrane, and caspase-mediated cleavage of 

multiple intracellular proteins.23,24,34,35

Because of the ability to preferentially induce tumor cell 

apoptosis, a number of recombinant TRAIL isoforms have 

been tested in preclinical studies using human tumor xeno-

grafts or immunocompetent mouse tumor models. Systemic 

administration of large amounts of recombinant TRAIL 

protein is one means by which the TRAIL receptors on can-

cer cells can be engaged to activate the apoptotic cell death 

machinery extrinsically.29,32 Identification of the cell-surface 

receptors that bind TRAIL and signal for apoptosis led to 

the development of a variety of mAb-based therapies.35–39 In 

addition to exploiting this pathway via recombinant proteins, 

others have developed gene-transfer therapies using viral 

vectors that encode for TRAIL protein.40–43 These methods 

can allow for the prolonged expression of TRAIL and with 

additional modifications to the vectors they can be targeted 

to specific sites of interest. In this review, we summarize the 

biology of TRAIL and the TRAIL receptors, strategies for 

targeting the TRAIL-induced death pathway, and preclinical/

clinical studies aimed at exploiting this pathway for the 

treatment of cancers.

TRAIL and TRAIL receptors
Within the course of several months, a number of publica-

tions reported the identification of multiple cellular receptors 

with the ability to bind to either soluble or membrane-bound 

TRAIL. Four membrane-bound human TRAIL receptors were 

identified: DR4,44 DR5/ tumor necrosis factor-related apop-

tosis-inducing ligand receptor (TRAIL-R) 2/tumor necrosis 

factor-related apoptosis-inducing ligand receptor inducer 
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of cell killing 2 (TRICK2)/KILLER,45–52 TRAIL-R3/decoy 

receptor (DcR) 1/tumor necrosis factor-related apoptosis-

inducing ligand receptor without an intracellular domain 

(TRID)/lymphocyte inhibitor of TRAIL (LIT),45,46,49,50,53,54 and 

TRAIL-R4/DcR2/tumor necrosis factor-related apoptosis-

inducing ligand receptor with a truncated death domain 

(TRUNDD)55–57 (we refer to these receptors as TRAIL-R1, 

-R2, -R3, and -R4, respectively; Figure  1). The TRAIL 

receptors are all expressed in a cell surface form and (with 

the exception of TRAIL-R3) are constitutively expressed in 

a wide variety of cells and tissues. Both TRAIL-R1 and -R2 

contain DDs in the intracellular portions of the molecules, 

and ligation of either of these receptors is capable of inducing 

apoptosis.44–52 TRAIL-R3 is expressed as a glycosylphos-

phatidylinositol (GPI)-linked cell-surface protein with no 

known signaling properties.45,46,49,50,53,54 TRAIL-R4 contains 

only a partial DD and ligation of this receptor does not lead 

to apoptosis.55–57 Interestingly, the genes encoding these four 

receptors are all highly homologous (ranging from 54% to 

70% identical) and map to a cluster in human chromosome 

8p21-23, suggesting that they arose by gene duplication in 

the recent evolutionary past. It is believed that the DcRs 

can thus “compete” for binding of TRAIL, and reduce the 

apoptotic potential of TRAIL.46 In mice, genes for multiple 

TRAIL-receptor homologs have been identified, but only 

one receptor (KILLER/DR5) has been characterized at the 

protein level.58,59

Like other TNF family member proteins, TRAIL mono-

mers form bell-shaped trimers as a result of head-to-tail 

interactions.60 TRAIL trimerization, like that seen for other 

TNF family members, corresponds to superior biologic activ-

ity over that of monomeric or dimeric versions of TRAIL.23 

TRAIL-R1 (in humans) or -R2 ltrimerization activates the 

extrinsic apoptotic pathway61 (Figure 2), one of the two 

main pathways in which apoptotic death results from the 

systematic disassembly of the cell. Once trimerized, TRAIL-

R1 or -R2 serves as the aggregation point for a multimeric 

protein structure called the “death-inducing signaling 

complex” (DISC) that is comprised of the ligated TRAIL-

R1 or -R2, Fas-associated death-domain protein (FADD), 

and procaspases 8 and 10.62,63 Autocatalytic cleavage of 

procaspase 8 into its active form is followed by the cleavage 

and activation of caspases 3, 6, and 7, which are the “effector 

caspases” responsible for the proteolytic cleavage of multiple 

protein targets necessary for the maintenance of general cel-

lular integrity (such as caspase-activated deoxyribonuclease 

[CAD], and poly(ADP-ribose)polymerase [PARP]).63 Active 

caspase 8 then amplifies the apoptotic signal by cleaving the 

pro-apoptotic B-cell leukemia/lymphoma 2 (Bcl-2) family 

protein Bcl-2 homology (BH) 3 interacting-domain death ago-

nist (Bid), part of the BH3-only group of proteins that potently 

regulate apoptotic cell death,64 thereby simultaneously trig-

gering the intrinsic apoptotic pathway that leads to a number 

of changes at the mitochondrial level that are controlled by 

interactions of pro- and anti-apoptotic proteins.65,66 The loss 

of mitochondrial membrane potential permits the escape 

of cytochrome c (Cyt-c) and second mitochondria-derived 

activator of caspases/direct inhibitor of apoptosis protein 

binding protein with low isoelectric point (Smac/DIABLO) 

into the cytosol. Cytosolic Cyt-c combines with adenos-

ine triphosphate (ATP) and apoptotic peptidase-activating 

factor 1 (APAF-1) to form the apoptosome, which activates 

caspase 9.67,68 Smac/DIABLO blocks the function of caspase 

inhibitors such as X-linked inhibitor of apoptosis protein 

(XIAP).69,70 Thus, a stronger apoptotic signaling is generated 

after engagement of the intrinsic apoptotic pathway.

Strategies for targeting  
the TRAIL-induced death pathway  
in cancer: preclinical/clinical studies
Targeting the TRAIL pathway to induce the death of 

malignant cells can be accomplished in a number of 

ways – exogenous deliveries of recombinant tumor necrosis 

factor-related apoptosis-inducing ligand (rTRAIL) protein 

or agonistic antibodies specific for TRAIL-R1 or -R2. 

The external carboxy-terminal region of TRAIL contains 

the receptor-binding domain and can be cleaved to yield a 

TRAIL-R1

TRAIL-R2 TRAIL-R3

TRAIL-R4

TRAIL-R4
DcR-2

TRUNDD

TRAIL-R3
TRID
DcR-1

LIT

TRAIL-R2
DR5

TRICK2
KILLERDR4

Cysteine-rich
domain

Death domain

GPI anchorTransmembrane
domain

Truncated
death domain

Figure 1 Human tumor necrosis factor-related apoptosis-inducing ligand-receptor 
(TRAIL-R) structure and nomenclature. Death domains designate receptors (TRAIL-R1 
and -R2) capable of inducing apoptosis. TRAIL-R3 and TRAIL-R4 are incapable of 
inducing apoptosis due to the lack of a functional intracellular death domain.
Abbreviations: DcR, decoy receptor; DR, death receptor; GPI, glyco
sylphosphatidylinositol; LIT, lymphocyte inhibitor of TRAIL; TRICK2, tumor necrosis  
factor-related apoptosis-inducing ligand receptor inducer of cell killing 2; TRID, 
tumor necrosis factor-related apoptosis-inducing ligand receptor without an 
intracellular domain; TRUNDD, tumor necrosis factor-related apoptosis-inducing 
ligand receptor with a truncated death domain.
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biologically active form of soluble TRAIL.71 Studies using 

rTRAIL in vivo have demonstrated low toxicity to normal 

cells while inducing tumor cell death in mouse models of 

cancer.29,32 However, subsequent studies using human cells 

suggested that tagged forms of the rTRAIL protein could in 

fact induce apoptosis in normal, primary human hepatocytes, 

similar to other TNF family member proteins.72 Studies of 

non-tagged forms of rTRAIL have shown that they are not 

toxic to normal human cells, while still inducing the death 

of human xenograft tumors in vivo.73,74 To date, there has 

been one rTRAIL compound developed for clinical applica-

tion, dulanermin, which is comprised of the homology TNF 

domain within the extracellular domain of human TRAIL.29,75 

In a dose-escalation study, dulanermin was found to be well 

tolerated as a single agent and resulted in an antitumor activ-

ity (partial response) in one cohort of patients and stable 

disease in another.75 Dulanermin has also been used in a 

number of clinical trials in which it was found to be nontoxic 

and well tolerated when combined with standard-of-care 

treatments.76,77 Unfortunately these combination studies 

have not indicated the definitive superiority of rTRAIL 

combination therapy over standard-of-care treatment alone. 

rTRAIL delivery is advantageous due to the fact that it can 

bind both TRAIL-R1 or -R2 resulting in a greater apoptotic 

signal; however rTRAIL can also bind to DcRs, which would 

result in no apoptotic event at all. Future clinical trials will 

be required to provide further evidence for the efficacy of 

rTRAIL-related therapies for cancer.

In addition to rTRAIL therapy, agonistic mAbs to TRAIL-

R1 and -R2 have become attractive methods for inducing the 

TRAIL-apoptotic pathway in cancer cells. mAbs provide spe-

cific activation of the receptors that induce death, as opposed 

to rTRAIL protein, which has the potential to also bind non-

active DcRs. mAbs also allow for a longer half-life in vivo 

compared with rTRAIL. A multitude of preclinical studies 

have been conducted to address the efficacy of mAbs for anti-

tumor activity. The agonistic anti-mouse TRAIL-R-specific 

mAb MD5-1 has shown promising antitumor results in mouse 

TRAIL-R1
or -R2

D
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C FADD

IκB

Bax

BidCaspase 8/10

Caspase 9Procaspase 3

Procaspase 9
+ Apaf-1Caspase 3

CAD PARP
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Bcl-2
Bcl-XL

Cyt-c
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effects

FLIP

XIAP
cIAP-1
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Figure 2 Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced signaling pathways.
Notes: Tumor necrosis factor-related apoptosis-inducing ligand receptor (TRAIL-R) 1 and TRAIL-R2 pathways resulting in apoptosis are depicted by green and purple 
arrows. Blue arrows illustrate TRAIL-R4 signaling resulting in anti-apoptotic events. Red lines indicate up- or downregulation of specific molecular targets.
Abbreviations: Apaf-1, apoptotic peptidase-activating factor 1; Apo2L, Apo-2 ligand; Bak, Bcl-2 homologous antagonist/killer; Bax, Bcl-2-associated X protein; Bcl, B-cell 
leukemia/lymphoma; bid, Bcl-2 homology 3 interacting-domain death agonist; CAD, caspase-activated deoxyribonuclease; cIAP, cellular inhibitor of apoptosis; Cyt-c, 
cytochrome c; DISC, death-inducing signaling complex; FADD, Fas-associated death-domain protein; FADD-DN, dominant negative FADD; FLIP, FADD-like IL-1 beta 
converting enzyme (FLICE)-like inhibitory protein; IκB, inhibitor of kappa B; NF-κB, nuclear factor kappa B; PARP, poly(ADP-ribose)polymerase; Smac/DIABLO, second 
mitochondria-derived activator of caspases/direct inhibitor of apoptosis protein binding protein with low isoelectric point; XIAP, X-linked inhibitor of apoptosis protein.
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models of cancer and is well tolerated. Takeda et al demon-

strated the antitumor activity of MD5-1 in a syngeneic tumor 

model with immunocompetent mice.78 This study found that 

MD5-1 could inhibit the growth of TRAIL-sensitive tumors, 

but more importantly demonstrated the ability of MD5-1 to 

induce a tumor-specific immune response that subsequently 

eradicated TRAIL-resistant variants. These studies further 

elucidated the role for Fc receptor (FcR)-bearing immune 

cells cross-linking the Fc region of MD5-1 to mediate tumor 

cell lysis. Previous researchers had shown the necessity of 

cross-linking MD5-1 in vitro, but this was the first study to 

describe the role of FcR-expressing innate immune cells 

(eg, macrophage and dendritic cells) in MD5-1-mediated 

lysis in vivo.79

This observation was profound, as it led to the under-

standing of how MD5-1 mAb treatment induced an anti-

tumor immune response capable of eradicating otherwise 

TRAIL-resistant cells. MD5-1-mediated tumor cell lysis 

results from cross-linking innate immune cells that express 

FcR with apoptotic tumor cells coated by MD5-1. The 

cross-linking event activates the immune cells, as well as 

induces the recruitment of other FcR-expressing cells to the 

tumor microenvironment – increasing the number of effector 

cells present. The activated FcR-expressing immune cells 

can endocytose the apoptotic tumor cell and cross-present 

tumor antigens to T-cells leading to the development of a 

tumor-specific immune response.78,79 This FcR-dependent 

phenomenon has also been documented using drozitumab, 

a human anti-TRAIL-R1 mAb, and other TNF family 

member mAbs.80,81 These preclinical studies have set the 

groundwork for mAbs to TRAIL-R1 or -R2 to move into 

clinical trials for cancer.

Multiple agonistic TRAIL-receptor-specif ic mAbs 

have been or are currently in human clinical trials: the 

anti-TRAIL-R1 mAb mapatumumab and anti-TRAIL-R2 

mAbs conatumumab, lexatumumab, tigatuzumab, and 

drozitumab.82 As monotherapies, all of these mAbs have 

shown little-to-no adverse events in Phase I and II clinical 

trials testing for toxicity.36,37,83,84 For many of the mAbs, 

responses were sporadic and few, though stable disease was 

demonstrated in a population of patients in many of the 

trials suggesting an antitumor response. Further preclinical 

and clinical trials combining the various mAbs with other 

treatments have shown some promising results, suggesting 

additive and/or synergistic roles for mAbs with current, 

standard therapies.85–87 Most recently, a preclinical study from 

Tuthill et al demonstrated the synergistic relationship between 

the human anti-TRAIL-R2 mAb conatumumab and human 

rTRAIL dulanermin to kill primary ovarian cancer cells.88 

They revealed that conatumumab binds a different epitope 

within TRAIL-R2 than dulanermin, allowing the concomitant 

binding of both reagents resulting in enhanced cross-linking 

and apoptosis-inducing capacity. Further, the combination 

therapy enhanced DISC formation and subsequent caspase 

8 activation in the cancer cells.

In summary, TRAIL-receptor agonists have proven 

to be well tolerated and have yielded antitumor activity 

to some degree in patients (ie, stable disease or partial 

responses), though additional trials will need to be done 

to achieve significant activity with TRAIL-based therapies 

for cancer.

Mechanisms regulating resistance 
to TRAIL-induced apoptosis
One of the biggest questions regarding the biology of 

TRAIL has been what determines its selectivity for tumor 

cells. The molecular mechanisms underlying the profound 

differential sensitivities of normal and cancerous cells have 

been a subject of intense interest. An early hypothesis put 

forth to explain this difference was based on the observations 

that neither TRAIL-R3 nor -R4 was capable of activating 

the apoptotic process. Additionally ligation of TRAIL-R4 

can trigger the nuclear factor of kappa B (NF-κB) pathway 

leading to anti-apoptotic effects and protection of the cell 

from TRAIL-R1 and -R2-induced death.55 Thus, it seemed 

possible that these receptors might act as “decoys” and func-

tionally sequester TRAIL from the death-inducing TRAIL-

R1 and -R2. Indeed, some early results were consistent with 

this hypothesis, including the observation that overexpres-

sion of TRAIL-R3 in TRAIL-sensitive target cells conferred 

resistance.46,49 In addition, treatment of endothelial cells 

with phospholipase C (to “strip” GPI-linked TRAIL-R3) in 

the presence of cycloheximide (to prevent re-expression of 

this molecule) was reported to result in the conversion of 

these cells from TRAIL resistant to sensitive.46 Similarly, 

overexpression of TRAIL-R4 in TRAIL-sensitive cells has 

also been shown to inhibit TRAIL-induced apoptosis.55–57 As 

attractive as the “decoy hypothesis” was as an explanation 

for the resistance of normal cells to the effects of TRAIL, it 

suffered from a variety of flaws. First, although TRAIL-R4 

mRNA is detected in a wide variety of human tissues, signifi-

cant levels of TRAIL-R3 mRNA are only seen in peripheral 

blood, spleen, lung, and skeletal muscle (lower levels have 

been reported in other tissues upon extended exposures of 

Northern blots).46,49,50,53,54 Second, in order for either TRAIL-

R3 or -R4 to effectively act as “decoy” receptors they either 
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need to be expressed at much higher levels or have markedly 

higher affinities than the two “death-inducing” receptors 

(TRAIL-R4 and -R2). Not only are the levels of expression 

of TRAIL-R3 and -R4 not significantly greater than -R1 and 

-R2 (indeed, as noted, the expression pattern of -R3 seems 

to be much more restricted than those of -R1 and -R2), but 

the affinities of the four TRAIL receptors are actually quite 

similar.50,53,55

If susceptibility to the apoptosis-inducing effects of 

TRAIL is not controlled by “decoy” receptors, how is it 

controlled? An initial clue to this mystery was provided 

by the observation that a number of tumor cells that are 

normally resistant to TRAIL are rendered susceptible by 

treatment with either actinomycin D or cycloheximide,34 

suggesting that resistance of many tumors is mediated by a 

labile but constitutively produced protein(s) that interfere(s) 

with activation of the intracellular signaling process(es) 

that ultimately results in apoptosis. One potential candi-

date for such an intracellular inhibitor of apoptosis is the 

inhibitor of caspase 8 activation, cellular FLICE-inhibitory 

protein (cFLIP).89 Further investigation demonstrated that 

TRAIL-resistant tumor cells expressed high levels cFLIP. 

In contrast, TRAIL-sensitive tumor cells contained either 

no detectable cFLIP, or very low levels of this protein.34 

Upon treatment of tumor target cells with actinomycin 

D the intracellular levels of cFLIP were found to rapidly 

decrease, and the sensitivity of the target cells to TRAIL 

commensurately increased. Expression or non-expression 

of cFLIP does not appear to be the sole regulator of sen-

sitivity to TRAIL, as additional anti-apoptotic molecules, 

such as anti-apoptotic members of the Bcl-2 family of 

proteins, inhibitors of apoptosis proteins (IAPS), Akt, and 

Toso, have also been suggested to regulate TRAIL-receptor 

signaling.34,90–93

Finally, posttranslational modif ications have been 

suggested to participate in the regulation of tumor cell 

sensitivity to TRAIL, as there are data suggesting a link 

between DR O-glycosylation mediated by polypeptide 

N-acetylgalactosaminyltransferase 14 (GALNT14) and 

TRAIL sensitivity.94 This relationship has only been observed 

in human non-small-cell lung carcinoma, pancreatic cancer, 

and melanoma cell lines, so it is unknown to what extent 

GALNT14-mediated O-glycosylation contributes to the 

sensitivity in a broader panel of tumor cells. Moreover, 

the presence of TRAIL DRs in lipid rafts within the cell 

membrane constitutes another essential mechanism for 

efficient signaling.95–97 There has even been investigation into 

the relationship between tumor cell sensitivity to TRAIL and 

cell-cycle progression,98,99 as G0-, G1-, or G2-arrested tumor 

cells were more sensitive to TRAIL than non-arrested cells.

Countering resistance  
to TRAIL-based therapeutic agents
Because of these resistance mechanisms, identifying combi-

nations with current therapies capable of sensitizing tumors 

to TRAIL-induced apoptosis has become an important topic 

of research. Synergistic effects of current cancer therapies 

in combination with TRAIL agonists have previously been 

reported in the literature. These potentiating effects are 

commonly due to expression regulation of proteins that play 

important roles in the TRAIL-induced death pathway, and it 

is likely that these combinations can make TRAIL-receptor 

agonists a feasible approach for treating cancer.

Of the drugs that currently exist for the treatment of cancer, 

histone deacetylase inhibitors (HDACi) are attractive candi-

dates for combination therapy with TRAIL-receptor agonists. 

HDACi epigenetically alter gene expression as a result of 

increased histone acetylation. HDACi have been shown to 

not only increase the cell-surface expression of TRAIL-R1 

and -R2, but also to increase the signaling efficiency upon 

ligation of the receptors.95,100–102 Furthermore, HDACi can 

alter the expression of pro- and anti-apoptotic proteins 

that regulate the TRAIL-induced death pathway. Increased 

expression/activation of caspase 8, Bid, and Bax by HDACi 

has been observed.103,104 HDACi-induced TRAIL sensitization 

can also occur through the downregulation of anti-apoptotic 

Bcl-2 family proteins and cFLIP,105,106 known inhibitors of the 

TRAIL-apoptotic pathway. Proteasome inhibitors have also 

been investigated as possible combinatorial agents. Prolonged 

proteasome inhibition results in increased expression and 

accumulation of pro-apoptotic proteins, decreased cFLIP, 

and induction of cell-cycle arrest – all of which can increase 

TRAIL sensitivity.107–109 Proteasome inhibitors, such as bort-

ezomib, can also increase TRAIL-receptor agonist sensitivity 

of cancer cells through upregulation of TRAIL-R1/-R2.110,111 

Aside from HDACi and proteasome inhibitors, a broad 

range of standard chemotherapeutics have also demonstrated 

similar results to increase sensitivity in combination with 

TRAIL-receptor agonists.85–87,112

Chemotherapeutics are efficient at killing tumor cells; 

however their ability (as single agents) to induce long-lasting 

immunity against tumors can be limited and drug-type 

dependent.113–116 Therefore, a growing area of research is 

the combination of TRAIL-receptor agonists with cytokine 

therapy or immunomodulators to help elicit antitumor 

immunity. Interferons (IFNs) are a pleiotropic family of 
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cytokines that directly act on and inhibit tumor cell function. 

For these reasons IFNs have been used to treat over 14 

types of malignancies and have the longest documented 

use in oncology.117,118 In contrast to simply killing tumor 

cells, IFNs play a crucial role in the induction of antitumor 

immunity,119–121 and can modulate the death-inducing signal-

ing pathway.122,123 Preclinical studies combining IFN-g with 

rTRAIL or anti-TRAIL-R1/-R2 mAb resulted in increased 

tumor cell death and inhibition of tumor outgrowth in xeno-

grafted mice.124 Immunomodulators, such as mAb against 

immune-stimulating or immune-suppressive cellular recep-

tors,125 provide another combinatorial option for optimizing 

DR-agonist efficacy. One such option is the implementation of 

“trimAb”, a combination of anti-TRAIL-R2 mAb with T-cell 

activating mAb against cluster of differentiation (CD) 40 and 

CD137.38 The concomitant activation of T-cells has become 

an attractive approach to augment the therapeutic effect of 

anti-TRAIL-R2 mAb.126,127 Because anti-TRAIL-R2 mAb 

can activate innate immune cells via FcR cross-linking, the 

addition of T-cell activating mAb is thought to potentiate the 

induction of antitumor immunity. Mechanistically, trimAb 

works to kill the tumor cells (via anti-TRAIL-R2) resulting 

in the release of tumor antigens that can be effectively recog-

nized by the immune system (with help from anti-CD40 and 

CD137 stimulation) to mount a robust antitumor response.128 

Preclinical models using trimAb have demonstrated the ability 

to elicit tumor-specific T-cell responses capable of eradicating 

established tumors, even those that were otherwise resistant 

to TRAIL-induced death.38

Conclusion and perspectives
Though all of these combinatorial treatments are promis-

ing, one must remember that while these drugs can increase 

cancer cell sensitivity to TRAIL-receptor-agonist-induced 

death, they may also sensitize normal cells as well. It will be 

important to carefully assess the off-target effects of combina-

torial therapies. However, evidence from preclinical and even 

clinical studies clearly demonstrates the potential for TRAIL-

based therapeutics in the treatment of cancers. The pitfalls 

of these therapies have been outlined, and the strategies to 

overcome these shortcomings are being rigorously inves-

tigated. Novel/altered TRAIL DR agonists with increased 

sensitivity, selection, and potency are needed and are cur-

rently being developed. Even if TRAIL-based monotherapies 

are suboptimal, combination therapies are still a promising 

avenue, especially those that include immunomodulators, 

given that anti-TRAIL-R1 and -R2 mAbs naturally induce 

an immune response via FcR cross-linking.
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