
© 2015 Yen et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0)  
License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further 

permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on 
how to request permission may be found at: http://www.dovepress.com/permissions.php

Advances in Genomics and Genetics 2015:5 93–105

Advances in Genomics and Genetics Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
93

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/AGG.S58494

Designing metabolic engineering strategies with 
genome-scale metabolic flux modeling

Jiun Y Yen1,2

Imen Tanniche1

Amanda K Fisher1–3

Glenda E Gillaspy2

David R Bevan2,3

Ryan S Senger1

1Department of Biological 
Systems Engineering, 2Department 
of Biochemistry, 3Genomics, 
Bioinformatics, and Computational 
Biology Interdisciplinary Program, 
Virginia Tech, Blacksburg, VA, USA

Correspondence: Ryan S Senger 
Department of Biological Systems 
Engineering, Virginia Tech,  
301C HABB1, Blacksburg, VA, USA 
Tel +1 540 231 9501 
Email senger@vt.edu

Abstract: New in silico tools that make use of genome-scale metabolic flux modeling are 

improving the design of metabolic engineering strategies. This review highlights the latest 

developments in this area, explains the interface between these in silico tools and the experi-

mental implementation tools of metabolic engineers, and provides a way forward so that in 

silico predictions can better mimic reality and more experimental methods can be considered 

in simulation studies. The several methodologies for solving genome-scale models (eg, flux 

balance analysis [FBA], parsimonious FBA, flux variability analysis, and minimization of 

metabolic adjustment) all have unique advantages and applications. There are two basic 

approaches to designing metabolic engineering strategies in silico, and both have demonstrated 

success in the literature. The first involves: 1) making a genetic manipulation in a model; 2) 

testing for improved performance through simulation; and 3) iterating the process. The second 

approach has been used in more recently designed in silico tools and involves: 1) comparing 

metabolic flux profiles of a wild-type and ideally engineered state and 2) designing engineer-

ing strategies based on the differences in these flux profiles. Improvements in genome-scale 

modeling are anticipated in areas such as the inclusion of all relevant cellular machinery, the 

ability to understand and anticipate the results of combinatorial enrichment experiments, and 

constructing dynamic and flexible biomass equations that can respond to environmental and 

genetic manipulations.

Keywords: genome-scale modeling, flux balance analysis, flux variability analysis, minimiza-

tion of metabolic adjustment, metabolic bottleneck, pathway optimization

A brief introduction to genome-scale metabolic 
flux modeling
A “genome-scale” metabolic flux model (GEM) consists of a network of biochemical 

reactions that is reconstructed based on the genomic sequence and annotation of a 

cell. Assuming a “steady-state” metabolism (ie, a snapshot of metabolism at one time 

point) is reached on a short time-scale, these reactions can be represented by a linear 

system of equations. Then, problems such as maximizing specific chemical produc-

tion or growth can be solved efficiently by linear programming. GEMs and their uses 

have been reviewed thoroughly, and they are most basically used to predict reaction 

flux, which is the overall rate of metabolite conversion.1,2 Often, laboratory measure-

ments including the rates of substrate consumption, product formation, and growth 

are used as model constraints so calculations coincide with observations. Other model 

constraints can be derived from reaction thermodynamics,3 cellular regulatory net-

works,4 and -omics datasets.5 GEMs have been constructed and utilized for intensively 
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studied model organisms with well-annotated genomes (eg, 

Escherichia coli MG1655 [bacteria],6 Saccharomyces cer-

evisiae [yeast],7 Mus musculus [mouse],8 and Arabidopsis 

thaliana [plant]9). In addition, homology algorithms have 

enabled GEM construction of the less-studied organisms. 

For example, the European Bioinformatics Institute has con-

structed draft GEMs for 2,630 organisms across phylogenetic 

domains using automated model-building methods,10 and the 

Model SEED also contains several GEMs and has the ability 

to custom-build GEMs for annotated genomes submitted 

by the user.11 The construction of high-quality models often 

requires expert-informed manual curation,12 but automated 

reconstruction provides foundations for further improvement. 

Although GEMs have been built for species of all domains, 

microbes still dominate GEM reconstructions and studies due 

to their relative genomic simplicity, usefulness in biotechnol-

ogy, and the pathogenicity of some species.

GEMs have extraordinary utility for biological discovery, 

and novel computational tools have been developed to predict 

metabolic engineering strategies, which are then validated 

in the laboratory. Much research in metabolic engineering is 

focusing on the synthesis of valuable chemicals, biofuels, and 

pharmaceuticals. Model-guided metabolic engineering presents 

significant advantages, notably the minimization of laboratory 

resource use and time required to develop productive strains. 

Using GEM predictions to design strains enables researchers 

to engineer product yield/selectivity, substrate utilization, and 

growth rate. Future developments are anticipated to allow engi-

neering of toxicity responses, cellular differentiation, culture 

density, and cellular interactions with other cells and materials. 

Some of the computational tools for predicting gene targets in 

GEMs for metabolic engineering have been reviewed.1 The 

focuses of this review are: 1) how predictions from different 

tools have been translated into experimental metabolic engi-

neering strategies and 2) which of the experimental methods 

available are (or are not) represented in the computational (in 

silico) tools. Since the experimental toolset for metabolic engi-

neering is expanding, this review also addresses how new tools 

can be incorporated in the in silico design strategies.

In silico metabolic engineering tools
It has been long believed that cells (especially microbes) 

maintain optimal growth as their primary objective. It has been 

shown that an additional objective of a minimal adjustment 

between initial and engineered states also exists.13 Imposing 

the goal of chemical overproduction by metabolic engineer-

ing often conflicts with the optimal growth objective. Thus, 

genome-scale modeling serves to establish the relationship 

between target chemical production and growth. In silico 

metabolic engineering tools seek to identify genetic manipula-

tions to alter this relationship so that stable strains with high 

chemical production and growth can be achieved. This section 

describes the various methods available for solving GEMs, 

and it highlights those used when metabolism has been engi-

neered. In addition, this section presents the recent advances 

in in silico tools used with GEMs to generate metabolic 

engineering strategies for the overproduction of a targeted 

chemical. In this review, in silico metabolic engineering tools 

are classified as “top-down” or “bottom-up”. The top-down 

algorithms generate/apply metabolic modifications in silico 

and then simulate their effects on the dual objectives (ie, pro-

ductivity and growth) through genome-scale metabolic flux 

modeling. The procedure is repeated until optimal metabolic 

modifications are identified. On the other hand, bottom-up 

algorithms generate separate flux solutions where: 1) growth is 

maximized and 2) product formation of interest is maximized. 

Differences between the two flux distributions are identified 

as targets to design metabolic engineering strategies. These 

approaches are reviewed in detail in the following section; 

however, first the methods for generating metabolic flux solu-

tions of GEMs are summarized.

Flux balance analysis and its variants
The fundamental approaches of constraint-based model-

ing have been reviewed,1,2 and a subset of these applicable 

to metabolic engineering are described here. The essential 

base of almost all predictive tools is flux balance analysis 

(FBA), which solves the linear system of biological reac-

tions given the “pseudo-” steady-state assumption and an 

objective function (eg, maximize growth or chemical pro-

duction rate) using linear programming. The flux balance 

equation is now commonly written as S ⋅ v=0, where S is an 

m-by-n matrix containing stoichiometric coefficients for 

each biochemical reaction. Each compound is represented 

by a row of the matrix, and each reaction is represented in 

a column. The vector v contains flux values for all n reac-

tions of the system. The system also contains a “biomass 

equation” that describes cell growth. This is often com-

posed of stoichiometric amounts of macromolecules (eg, 

protein, DNA, RNA, lipids, cell wall), small molecules, and 

adenosine triphosphate (ATP) hydrolysis required for growth 

“maintenance”.14 FBA solves the system of equations given 

an objective function and constraints (upper and lower) for 

each flux contained in v. Flux constraints are imposed from 

laboratory measurements, thermodynamic predictions, and 

regulatory rules; many reaction fluxes are left unconstrained. 
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Two other useful approaches are parsimonious FBA (pFBA)15 

and flux variability analysis (FVA).16 Since the number of 

reactions is typically greater than the number of compounds 

in GEMs, multiple FBA solutions exist, and techniques that 

explore this solution space have been reviewed. The pFBA 

algorithm was developed to provide the FBA solution that 

meets optimality with a minimized total flux in the system. In 

addition, FVA serves the purpose of calculating the possible 

flux distributions of all reactions.

As mentioned earlier, cellular metabolism changes when a 

genetic manipulation is introduced in vivo. However, dramatic 

shifts in metabolism, on a global level, toward optimality are 

not immediate.17,18 Thus, a flux distribution predicted in silico 

that captures this initial response of a cell, instead of one that 

describes massive flux reorganization toward optimality, pro-

vides a better description of the cellular response to genetic 

changes. For this reason, the minimization of metabolic adjust-

ment (MOMA) algorithm was developed to predict the optimal 

flux distribution of altered metabolism that would require 

the smallest change from that of wild-type metabolism.17 

This concept has since been validated by 13C-isotope tracing 

studies.13 Similar to MOMA, the regulatory on/off minimiza-

tion (ROOM) tool hypothesizes that a cell attempts to com-

pensate for genetic manipulations through the fewest number 

of enzymatic reactions by gene regulation.18 Additional studies 

have shown that, in time, cells will evolve from this minimized 

flux redistribution state to the FBA solution.19 This concept, 

introduced over a decade ago,20 is shown in Figure 1. The goal 

of metabolic engineering is to alter the metabolic network of 

a cell so that optimal growth and target chemical production 

are coupled (meaning a product must be formed as the cell 

reaches an optimum growth rate). This approach leads to stable 

strains capable of industrial production. As a cell is engi-

neered, MOMA/ROOM can predict the immediate outcome 

of genetic manipulations, and FBA (or pFBA) predicts the 

long-term evolved state of the cell. In the following sections, 

the top-down and bottom-up in silico metabolic engineering 

tools are discussed, and a summary of these tools is given in 

Table 1. However, it is important to note that not all tools are 

designed to consider evolution and long-term strain stability, 

which are critically important if an industrial process is going 

to consider chemostat cultivation over batch processing in 

which the microbe is replaced frequently.

Top-down in silico tools for designing 
metabolic engineering strategies
As mentioned previously, a top-down approach is defined 

here as one in which genetic manipulations are made in 
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Figure 1 The relationship between the target chemical production flux and the growth rate for wild-type (solid line) and an engineered strain (dash line). The initial wild-type 
optima determined by FBA (bottom right) can be engineered and the resulting state predicted with MOMA/ROOM. Evolution will eventually optimize growth, which can be 
predicted by FBA/pFBA. Combinatorial addition of metabolic capabilities can expand the solution space beyond the wild-type potential. 
Abbreviations: FBA, flux balance analysis; MOMA, minimization of metabolic adjustment; pFBA, parsimonious FBA; ROOM, regulatory on/off minimization.
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Table 1 Summary of in silico tools for generating metabolic engineering strategies and the experimental tools that can be used for 
implementation

In silico tool Description Experimental tools§,† Reference(s)

Top-down approaches
Randomized gene knockouts Fluxes associated with reactions catalyzed by one or more  

genes are set to zero. Simulation performed by FBA, pFBA,  
MOMA, or ROOM

Gene knockouta 21, 22

OptKnock A bilevel optimization to find gene knockout candidates  
leading to product formation at optimal growth (FBA)

Gene knockouta 19, 20, 23

OptGene Explores the feasible solution region using a genetic algorithm to  
identify the necessary gene deletions for the desired phenotype

Gene knockouta 24

Cipher of evolutionary  
design (CiED)

Uses a genetic algorithm to identify optimal mutations  
to maximize product formation

Gene knockouta 
Gene overexpressionb

25

ReacKnock Inspired by OptKnock and enables up to 20 gene deletions Gene knockouta 26
OptReg An expansion of OptKnock designed to predict up- and  

downregulation of reactions to achieve a desired phenotype
Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

27

OptStrain Uses a universal database of known enzyme-catalyzed reactions  
to determine the minimal pathway modification required  
to maximize product formation

Gene knockouta 
Gene overexpressionb

28

MOMAKnock A similar bilevel programming framework to OptKnock except  
MOMA assumption was adapted to determine flux redistribution

Gene knockouta 29

Ant colony optimization  
with MOMA (ACOMoMA)

A hybrid of ant colony optimization and MOMA to predict  
gene knockout strategies

Gene knockouta 30

Bees Algorithm and FBA  
(BAFBA)

Similar to ACOMoMA, except Bees Algorithm is used  
to search gene knockouts and FBA is used to determine fitness

Gene knockouta 31

Flux balance analysis  
with flux ratios (FBrAtio)

Flux ratios serve as constraints to redirect metabolism  
to a desired product. Resulting flux ratio constraints  
can be translated to metabolic engineering strategies directly

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

32, 33

Bottom-up approaches
Flux distribution  
comparison analysis (FDCA)

Incremental solutions are compared to identify genes  
of reactions with significant flux changes

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

35, 36

Flux scanning based on  
enforce objective flux (FSEOF)

Identifies genes of reactions with increased flux upon  
maximizing product formation

Gene overexpressionb 37, 38

OptForce Flux variability analysis of wild-type and mutants (with a desired  
phenotype) are compared to identify genes of reactions with  
significant flux change

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

39–41

k-OptForce An expansion of OptForce with the integration of enzyme  
kinetic constants to allow optimal solutions to arise from  
metabolic and/or enzyme engineering

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

42

Continuous modifications  
(CosMos)

A continuous modification to flux bounds is used to identify upper  
and lower bounds that can guarantee product formation. The  
solution space is sampled randomly to find optimum solutions

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

43

Redirector Iteratively identifies all reactions with flux changes that  
accommodate for the progressive change in biomass  
and desired product

Gene knockouta 
Gene overexpressionb 
Gene expression knockdownc

44

Notes: §Not all experimental tools apply to all species; †direct genome editing is likely to eventually apply to all cases; agene knockout can be accomplished through 
insertion mutagenesis using homologous recombination (ie, λ red recombineering), transposable elements, or by genome editing with the aid of CRISPR-Cas systems; 
bgene overexpression can be performed using plasmids or genome knock-in/editing procedures, which are accomplished by inserting gene-of-interest with high expression 
promoter element using homologous recombination, transposable elements, or CRISPR-Cas systems. RBS and promoter engineering are recommended methods for 
modulating expression levels. The RBS calculator is a valuable tool for RBS design; cgene expression knockdown can be achieved through posttranscriptional gene silencing 
with sRNA, siRNA, antisense RNA, and/or microRNA. RBS redesign using the RBS calculator is also an effective strategy for gene expression knockdown.
Abbreviations: CRISPR, clustered regularly interspaced short palindromic repeats; FBA, flux balance analysis; MOMA, minimization of metabolic adjustment; pFBA, 
parsimonious FBA; RBS, ribosomal binding site; ROOM, regulatory on/off minimization.

silico, and then genome-scale modeling is used to determine 

whether the strategy is beneficial. The concept is shown in 

Figure 2. The simplest strategy to employ is creating single-

gene knockouts. This is done in silico by constraining all reac-

tions associated with a gene of interest to zero and performing 

FBA or MOMA/ROOM to look for knockouts that enhance 

target chemical production without compromising growth. 

This method was used in a well-known study to identify 

gene knockouts in E. coli, resulting in the overproduction of 

L-valine.21 Here, single-, double-, and triple-gene knockouts 
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were investigated in silico using MOMA to predict resulting 

phenotypes. Using a multifaceted approach that included 

the in silico gene deletion study, an industrially relevant 

strain capable of producing over 7.5 g/L of L-valine (2.27-

fold improvement over wild-type) was engineered. This 

method was also used to generate all single- and double-

gene knockout combinations in S. cerevisiae in an effort 

to overproduce succinate.22 FBA was used in calculations, 

and three single knockouts (∆mdh, ∆oac1, and ∆dic1) were 

selected for experimental validation. The ∆dic1 strategy 

was successful, yet non-intuitive for succinate production, 

and this study demonstrated an important proof-of-concept 

for designing strains by in silico predictions followed by 

experimental validations. OptKnock was one of the first 

Wild-type

vtarget

Flux redistribution

Identify candidates
Top-down:
If vtarget increases, strategy
becomes valid (iterate to find
optimal strategies)

Bottom-up:
Perturbed reactions are all
possible candidates

In silico engineered strain

Top-down Bottom-up

1

2

3

Methods:
Random
Genetic algorithm
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Ant colony algorithm
Bees Algorithm
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and compare with
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(OX or KD)
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minimize metabolic adjustment
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strains

Wild-type

Engineered
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Figure 2 Example workflow to design metabolic engineering strategies using “top-down” and “bottom-up” approaches. Several different in silico tools apply these strategies 
in different forms. In all cases, the objective is to maximize production of a target chemical (shown here as vtarget). The following metabolic engineering strategies are shown: 
(KO) gene knockout, (OX) gene overexpression, and (KD) gene expression knockdown.
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in silico metabolic engineering tools, and it guides the 

selection of gene knockouts in order to couple maximized 

product formation to growth.20 It uses FBA and identifies a 

limited number of gene knockouts, which serve to reshape 

the growth and product formation relationship as shown in 

Figure 1. Successful identification of gene knockout targets, 

followed by adaptive evolution to achieve FBA predictions, 

have led to industrially relevant strains capable of producing 

lactic acid,19 1,4-butanediol,23 and others. Since its introduc-

tion, other inspired approaches have attempted to extend its 

capabilities (ie, increase the potential number of gene candi-

dates for knockout) by reconsidering the bilevel optimization 

framework. Approaches such as OptGene24 and the cipher of 

evolutionary design (CiED)25 relied on an evolutionary algo-

rithm to select gene targets, and improved functionality was 

noted. ReacKnock has emerged recently with a new approach 

to the mixed integer bilevel optimization problem and enables 

up to 20 gene deletion predictions in a short amount of 

computational time.26 In their publication, the authors pro-

vide ReacKnock- and OptKnock-designed gene knockout 

strategies to produce succinate, ethanol, acetate, hydrogen, 

formate, glycolate, D-lactate, fumarate, and threonine from 

E. coli.26 OptReg extended OptKnock to include gene 

overexpressions,27 and OptStrain allowed incorporation of 

non-native metabolic pathways for the production of new 

chemicals.28 Other approaches, such as MOMAKnock29 

have focused on the limitations of FBA and have sought to 

implement MOMA in the automated design of gene knockout 

strategies. Further modifications have combined ant colony 

optimization (ACO) methods with MOMA in an algorithm 

called ACOMoMA. The ACOMoMA approach was applied 

to produce an improved gene knockout strategy for succinate 

production from E. coli.30 Another development achieved 

significant results using a hybrid of Bees Algorithm and 

FBA (BAFBA; a metaheuristic procedure) to design gene 

knockouts for succinate and lactate production.31

While most in silico designs rely on gene knockouts, oth-

ers infer gene overexpression and partial gene knockdowns as 

metabolic engineering strategies. In general, the flux change 

of a reaction may be the result of: 1) directly engineering 

genes of the catalyzing enzymes; 2) engineering the avail-

ability of reaction precursors and substrates upstream; or  

3) eliminating bottlenecks downstream. Thus, these strate-

gies are all major contributors to a metabolic adjustment. 

A recent approach called FBA with flux ratios (FBrAtio) 

considers strategies of gene overexpression, knockout, and 

partial knockdown for designing metabolic engineering 

strategies.32,33 FBrAtio examines how multiple enzymes 

compete for the same substrate and allow the distribution 

of this substrate to be modified and included as a flux ratio 

constraint in a GEM. Flux ratio constraints can be modified, 

and pFBA is used to predict global flux distributions. This 

procedure has been used to design metabolic engineering 

strategies for several chemicals by different organisms. 

The concept of the flux ratio constraint was first introduced 

for two enzymes that compete for the same compound.32 

However, this was later expanded to include all enzymes 

competing for the same compound.33 FBrAtio has been used 

to model the metabolic shift in Clostridium acetobutylicum 

from acids to solvents production as well as predict a high-

ethanol-producing phenotype.32 In addition, it has been used 

to examine metabolic engineering strategies for: 1) cellulose 

overproduction by A. thaliana; 2) isobutanol production by 

yeast; 3) acetone production by Synechocystis; 4) hydrogen 

production by E. coli; and 5) mixed solvents production by 

C. acetobutylicum.33 The purpose of this study was to dem-

onstrate further improvements of experimental implementa-

tions where possible with “fine-tuned” metabolic engineering 

strategies derived by FBrAtio. With Arabidopsis, it was shown 

experimentally that the overexpression of a heterologous 

uridine diphosphate (UDP)–glucose pyrophosphorylase 

(UGPase) increased cellulose production by approximately 

25%.34 The FBrAtio approach predicted that further increased 

uridine triphosphate (UTP) consumption by the UGPase could 

continue to increase cellulose production up to 30%–50% 

(compared to wild-type) before UTP depletion impacted the 

growth of the plants negatively.

Bottom-up in silico tools for designing 
metabolic engineering strategies
The tools classified as bottom-up approaches rely on multiple 

objective functions in genome-scale modeling to design meta-

bolic engineering strategies. The flux distribution comparison 

analysis (FDCA) provides a good example of this. First,  

a GEM is solved by FBA to maximize growth. Then, the 

GEM is solved (by linear MOMA [lMOMA]) to maximize 

the production of a chemical of interest. The differences 

between the flux distributions are considered, and rules for 

up- or downregulation of genes are determined based on 

significant changes between the flux distributions.35 FDCA 

has been used to improve lycopene production by 174% in 

an E. coli strain already capable of high lycopene produc-

tion,36 and it identified 51 potential gene targets, including 

five novel gene knockout targets and four novel gene over-

expression targets. The flux scanning based on enforced 

objective flux (FSEOF) approach was also developed to 
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enhance lycopene production.37 This approach also begins 

with maximizing biomass formation of a GEM with FBA, 

but the flux of product formation is constrained to be equal to 

the experimentally observed flux in the wild-type organism. 

Then, the theoretical maximum product formation rate is 

calculated in a new simulation by setting this as the objective 

function. FSEOF works by maximizing the cell growth rate 

while the target product formation rate is increased gradually 

from its initial value toward its theoretical maximum. Targets 

for gene overexpression are identified as fluxes that increase 

throughout simulations without changing direction. This 

method identified 35 gene overexpression targets for lycopene 

production by E. coli. FVA was then employed to narrow 

these potential targets by selecting those showing increases 

outside of the ranges due to flux variability.37 This approach 

can also be used with an altered biomass equation to accom-

modate intracellular target (eg, protein) accumulation. For 

example, the human superoxide dismutase (hSOD) enzyme 

was overproduced in Pichia pastoris using predicted gene 

knockout and overexpression strategies from MOMA and 

FSEOF, respectively.38

OptForce is another bottom-up approach that has enabled 

the incorporation of gene knockouts, overexpressions, and 

knockdowns as metabolic engineering strategies.39 OptForce 

also allows (and encourages) the incorporation of experimen-

tally measured metabolic flux data of the wild-type and a strain 

engineered to overproduce a target chemical. In general, flux 

variability is calculated for both wild-type and engineered 

strains, and the flux ranges are compared for each reaction. 

Candidates for metabolic engineering are identified as those 

reactions where there is no overlap between possible flux 

ranges. OptForce then performs a secondary optimization 

(a top-down procedure) where the minimal set of metabolic 

interventions is identified to achieve a desired goal. OptForce 

has been used in several applications, including the overex-

pression of succinate39 and fatty acids of specified chain length 

in E. coli.40 In addition, OptForce was used to design a meta-

bolic engineering strategy leading to a four-fold increase in 

intracellular malonyl-CoA concentration in E. coli, which was 

then utilized for the production of naringenin (a valuable plant 

secondary metabolite).41 The recent extension k-OptForce has 

enabled the incorporation of enzyme kinetic constants, where 

possible, and returns metabolic engineering strategies (ie, gene 

knockout, overexpression, or knockdown) along with kinetic 

parameters that could be altered by enzyme engineering.42 

This approach can consider relevant phenomena, such as 

substrate inhibition, that cannot be modeled using flux-based 

approaches alone. The continuous modifications (CosMos) 

approach significantly differs from OptForce in that changes 

to flux bounds are modified continuously, rather than by FVA 

results. CosMos then minimizes product formation given a 

constrained non-zero growth rate, and looks for modified 

flux constraints that still yield product formation under these 

conditions.43

Finally, the Redirector approach is different in that it 

relies on an artificial objective function consisting of con-

tributions from growth and metabolic flux redirected into a 

product-forming pathway and does not rely on manipulating 

flux bounds.44 Redirector can also design gene knockout, 

overexpression, or knockdown metabolic engineering strate-

gies, and the manipulation of algorithm parameters can alter 

the number of manipulations returned by the algorithm. The 

production of fatty acids by E. coli MG1655 was chosen as 

a test case of the algorithm. The algorithm designed strate-

gies capable of reaching 80% of the theoretical yield for 

myristoyl-CoA while maintaining 20% biomass yield.44 The 

global implementation of FBrAtio (currently in press) is 

also classified as an approach that does not manipulate flux 

bounds to derive metabolic engineering strategies. The global 

FBrAtio uses flux distribution maps of maximized growth 

and product formation using pFBA and designs flux ratio 

constraints that enable product formation and growth.

Experimental metabolic engineering 
tools
The available in silico metabolic engineering tools return 

strategies consisting of gene knockout, overexpression, and/

or knockdown (and enzyme engineering for k-OptForce). 

There are several ways in which these strategies can be 

implemented, but current in silico tools do not consider this 

level of detail. In this section, many common (but certainly 

not all) experimental implementation methods are reviewed 

along with their relationship to in silico predictions. For 

example, returning a gene overexpression strategy does not 

explain how it should be implemented. If it must be encoded 

on a plasmid, what type and strength of promoter/ribosomal 

binding site (RBS) combination should be used? What copy 

number of plasmid should be used? Since plasmid copy 

number per cell is heterogeneous, what impacts will this 

have? Will plasmid replication demand cellular resources that 

influence metabolic flux predictions? What are the impacts of 

antibiotic resistance genes? Should one or multiple copies of 

the gene of interest be knocked into the genome? Or, should a 

native promoter/RBS be tuned instead? If so, to what levels? 

Finally, what impact will this genetic manipulation have on 

the resulting phenotype? Will this significantly impact cell 
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composition, metabolic flux distribution, and predictions? 

These and more questions will be addressed by in silico tools 

that returned “fine-tuned” metabolic engineering strategies 

(eg, overexpress a target gene by 70% relative to wild-type) 

and take into account changing cell phenotype by updating 

the GEM biomass equation.

Manipulating gene expression
Here, basic experimental strategies for gene expression 

manipulations are reviewed in the context of genome-scale 

modeling. Clearly, not all tools and approaches can be 

discussed here, but the basics are identified. Manipulations 

can occur at the transcriptional, translational, and posttrans-

lational levels, with emphasis on the first two in microbes. 

Several experimental methods exist for generating gene 

knockouts that involve chromosomal integration for gene 

disruption. Of course, chromosomal integration can also 

be used to knock-in useful genes/regulatory elements. One 

particularly popular method for single-gene targeting is the 

polymerase chain reaction (PCR)-based version of λ red 

recombineering.45 It has also been used for the introduction 

of site-directed mutations, promoter tuning/replacement, 

and reporter genes for promoter tagging experiments.46 

The knock-in/knockout (KIKO) vectors facilitate the chro-

mosomal integration of large DNA segments (including 

multigene cassettes and entire pathways) at specific well-

characterized loci using λ red recombination.47 Other means 

of gene knockout involve the use of transposons or homolo-

gous recombination mediated by phage-derived elements, 

and more advanced genetic systems are required for other 

microbes, such as the clostridia.48,49 In higher plant species, 

such as A. thaliana, genomic integration is accomplished 

using an Agrobacterium-mediated method that makes use of 

its ability to transfer DNA from its tumor-inducing plasmid 

into the plant host genome.50,51 This technology has been 

used for both gene disruption and knock-in in Arabidopsis. 

Gene knockouts (and knock-ins) appear to be the most 

benign to genome-scale modeling predictions, as long as 

plasmids and antibiotic resistance markers are removed. 

Indeed, the presence of plasmids and antibiotics (even with 

effective antibiotic resistance genes) has been shown to alter 

cell phenotypes.52 The GEM biomass equation describes 

the cell phenotype, and how this equation should be altered 

by the presence of plasmids, antibiotics, or other genetic or 

environmental manipulations remains a subject for research. 

This makes clustered regularly interspaced short palindro-

mic repeats (CRISPR)-Cas systems53 attractive for genome 

editing from a genome-scale modeling standpoint. While 

the mechanisms of plasmid replication are understood, this 

cellular machinery is not yet encoded in GEMs, creating a 

divergence between the in silico and experimental systems. 

In addition, gene knockouts, knock-ins, and genome editing 

are designed to alter metabolism. When successful, this alters 

the cellular phenotype; thus, the biomass equation must be 

updated accordingly. However, this will require predictions 

or a simplified method of measurement, both of which are 

discussed later.

With this knowledge, it is easy to see why gene overex-

pression methods may lead to greater metabolic burden and 

uncertainty with genome-scale modeling, especially when a 

gene is overexpressed from a plasmid. Techniques that mini-

mize the ATP maintenance requirements of a cell are preferred 

and are more effectively modeled. With gene overexpression, 

promoter and RBS engineering have enabled significant 

progress. Controllable gene expression has launched the field 

of synthetic biology and led to the quest to design genetic 

circuits.54 Furthermore, promoter tuning55 with RBS optimiza-

tion can improve metabolic pathway function.56 Tools, such 

as the RBS calculator,57 are enabling RBS design based on 

thermodynamic principles. In these cases, it becomes clear 

that synthetic designs are enabling pathway overexpression 

by orders of magnitude, and at some point, cellular resources 

are depleted (eg, transfer RNA [tRNA] pools), creating com-

petition between cell growth and pathway expression. This is 

not yet accounted for by genome-scale modeling and presents 

a unique opportunity to integrate metabolic pathway tuning 

with genome-wide metabolic activity.

Gene expression tuning can also be engineered at the 

posttranslational level, where interactions with mRNA are 

the major focus. Small RNA (sRNA) bind targeted mRNA 

(through complementary base-pairing) and modulate its 

translation.58 The majority of sRNAs have been identified as 

translation repressors, and binding generally occurs at or near 

the RBS.59 Thermodynamic-based design has enabled “fine-

tuned” gene expression knockdowns,60 and these have proven 

advantageous in a metabolic engineering strategy to produce 

phenol from glucose.61 Similarly, artificial small interfering 

RNA and microRNA have been widely used in plant systems 

to reduce gene expression.62 Achieving stable gene integration 

in higher plants can be problematic. An alternative is to employ 

viral-induced gene silencing approaches.63 While these tech-

nologies enable gene knockdown, they are generally operated 

from plasmid-based systems, which provide the same chal-

lenges to genome-scale modeling as mentioned previously.
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Combinatorial approaches
Using genome-scale modeling to predict the outcomes of 

combinatorial metabolic engineering experiments is an area 

for many future advances. As shown in Figure 1, the addi-

tion of new genetic material (either synthetic or from other 

organisms) can expand the product-forming capabilities of 

an organism. Combinatorial approaches can involve induced 

chromosomal mutations, random insertion of transposons, 

genome shuffling, transcription factor engineering,64 or even 

randomized chromosomal insertion of synthetic DNA.65 Lyco-

pene production has been engineered successfully through: 

1) a combination of model-driven and transposon-based 

combinatorial knockouts66 and 2) the multiplex automated 

genome engineering (MAGE) platform, which relies on 

synthetic DNA insertion.65 In addition, gene overexpression 

libraries offer the opportunity to insert the genomic capabili-

ties of a single organism or a metagenome. This strategy has 

proven successful in locating genomic sequences to confer 

tolerance to furfural,67 among many others. The simultaneous 

expression of dual libraries on a plasmid and fosmid led to a 

unique combination of gene enrichment that increased acid 

tolerance in E. coli by 9,000-fold.68 Expanding the genome 

to confer resistance to toxins or new/improved metabolic 

capabilities has the potential to redefine the relationship 

between product formation and culture growth, as shown 

in Figure 1. In the case of conferring resistance to toxins, 

often uncharacterized or non-obvious library fragments are 

selected during enrichment.69 This is often because toxicity 

mechanisms, as well as many cellular interactions, are mul-

tigenic and still not understood fully. While genome-scale 

modeling cannot provide these types of predictions, where 

the interaction mechanisms are uncharacterized, the meta-

bolic potentials through the completion and addition of new 

pathways and enzymes are predictable. It is likely that the 

theoretical limits of metabolic enhancement due to library 

enrichment can be found through genome-scale modeling, 

and the emergence of metagenomic GEMs will likely contain 

the metabolic potentials.

Phenotyping
Phenotyping refers to the monitoring of cell chemical com-

position and differentiation. This is critical because the GEM 

biomass equation contains the cell chemical composition and 

is representative of the cellular phenotype, which is known 

to change with genetic and environmental perturbations. The 

role of the biomass equation has been shown to be crucial in 

genome-scale modeling,14,70 creating the need for accurate 

and near real-time monitoring techniques to interface with 

GEMs. In silico optimization methods have shown promising 

results,70 but it is likely that an experimental approach will 

be needed as a supplement. Traditional methods of biomass 

equation generation are laborious and involve offline ana-

lytical methods. Analysis of heterogeneous populations of 

differentiating (eg, sporulating) microbes is now possible 

using flow cytometry.71 In addition, Raman spectroscopy 

has recently proven useful for near real-time phenotyping 

of E. coli. Raman spectroscopy also does not require the 

use of chemical labels and is nondestructive to the sample. 

In one application, Raman spectroscopy was used to resolve 

fatty acids (saturated, unsaturated, and cyclopropane), cell 

membrane fluidity, amino acids, and total protein content of 

cultures exposed to toxic 1.2% volume per volume 1-butanol 

(and control cultures) over a 180-minute time course.72 In 

another approach, “chemometric fingerprinting”, a multi-

variate statistical analysis involving principal component 

analysis and linear discriminate analysis, was used to classify 

the E. coli phenotypes resulting from exposure to different 

classes of antibiotics.73 Chemometric fingerprinting is unique 

in that it uses the entire Raman spectrum to characterize a 

phenotype, whereas most approaches focus on only a few 

well-defined characteristic bands of the spectrum. With these 

types of near real-time analyses, GEM biomass equations 

can become dynamic and responsive to environmental and 

genetic changes. With current offline methods of phenotype 

characterization, this level of detail is not possible. However, 

with easily accessible phenotyping capabilities, biomass 

equations can be updated easily, leading to improved genome-

scale modeling performance.

The path forward
New metabolic engineering targets and 
opportunities with plants
Deriving metabolic engineering strategies with genome-

scale modeling is proving to be efficient and informative. As 

research continues to derive de novo metabolic pathways to 

synthesize valuable chemicals, optimization of product yield 

to meet industrial demands will be inevitable. Still, the vari-

ety of potential products from microbes remains limited and 

may be expanded in the near term by looking into complex 

eukaryotic species, such as plants. There are many valuable 

compounds made by plants that are not available elsewhere. 

For example, oil seed crops (eg, soybeans) produce edible veg-

etable oil that is used throughout the world. Although the path-

ways for lipid biosynthesis in higher plants have been studied 
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for years, understanding of the crucial regulatory mechanisms 

of these pathways remains limited. Thus, engineering plants 

to accumulate high levels of healthy omega-3 long-chain 

polyunsaturated fatty acids,74 or modified non-native fatty 

acids as replacements for petroleum-derived chemicals in 

industrial processes75 is desirable. Similarly, central carbon 

metabolism is a target for understanding the relationship 

between the regulation of carbon partitioning and biomass 

production in plants. Identifying metabolic bottlenecks in the 

production of cellulose, the energy-rich polymer that is tar-

geted for consolidated bioprocessing,76 could enhance efforts 

to produce more cellulose per plant in the field. Likewise, 

modeling is being applied to the goal of reducing plant lignin, 

a phenolic polymer in the secondary wall that limits our use of 

cellulosic biomass during industrial processing.77 One caveat 

of reducing lignin is that optimal plant growth must also be 

preserved, and GEMs may be uniquely positioned to tackle 

this issue because they can theoretically integrate metabolic 

behavior with plant growth.78 Enhancing the vitamin content 

of edible plants is another active area of research.79 For some 

vitamin synthesis pathways, enough information exists to 

begin the application of genome-scale modeling to increase 

the concentration of vitamins to meet minimal requirements 

for humans.80 In the future, it may be possible to use genome-

scale modeling to tackle issues such as optimizing plant 

growth under stressful or poor nutrient growth conditions. 

In these cases, genome-scale models would have to account 

for complex interactions between stress, hormone, and other 

signaling pathways that impact biomass synthesis and com-

position.81 In addition, a related application is to understand 

how to limit plant yield loss due to pests, by engineering 

known, disease-resistance pathways.81 All of these approaches 

will require flexible biomass equations that can respond to 

manipulations, and a complex multicellular plant will likely 

require tissue-specific GEMs that will integrate to form an 

overall plant phenotype.

Enzyme engineering for pathway 
redirection
The k-OptForce in silico tool is among the first to incor-

porate the concept of enzyme engineering to redirect 

metabolic flux for the production of target chemicals. 

Kinetics-based approaches to genome-scale metabolic 

modeling are emerging,82,83 and soon enzyme redesign will 

be a valid metabolic engineering strategy. Direct genome 

editing, which is preferred over insertion of plasmids and 

markers that consume cellular resources, will enable easy 

implementation. Enzyme engineering is a complex field 

itself and beyond the scope of this review, but effective 

in silico methods are emerging and are expected to play a 

role in enzyme redesign. Improvements in hardware and 

software performance will continue to expand the range 

and size of enzyme engineering problems and systems that 

can be studied. Current computational approaches can be 

divided into bioinformatics, molecular modeling, and de 

novo design.84 Bioinformatics approaches are typically based 

on analysis of evolutionary data and can be used to change 

activity, selectivity, and stability within a family of enzymes. 

Molecular modeling approaches (eg, molecular dynamics, 

quantum mechanics/molecular mechanics simulations) have 

considerable potential to address challenges in computational 

enzyme design and redesign. In particular, advances in these 

methods may enable improved calculation of binding affini-

ties and energy barriers, which will enhance understanding 

of enzyme specificity.85 De novo design is also showing 

increasing promise in designing enzymes, including those 

that catalyze reactions for which nature has not designed a 

catalyst. Notably, these novel methods may be enhanced by 

the application of molecular modeling approaches.86

Increasing modeling accuracy
Finally, the path forward must focus on methods that increase 

the accuracy of genome-scale metabolic flux modeling and 

improve agreements with 13C-isotopomer tracing studies. 

In our experience, there are four areas for immediate 

improvement. The first area includes the incorporation of a 

more detailed account of cellular machinery in GEMs. As 

mentioned previously, the ATP maintenance approximation 

of the GEM biomass equation should be replaced by mecha-

nistic accounts. This must also allow for the identification of 

metabolic burdens of plasmids and altered metabolic states as 

a result of genome editing. There are current ongoing efforts of 

“whole cell modeling” that aim to include cellular machinery 

in modeling efforts. These models are showing promise of 

being able to predict phenotypes as well as better integrate 

and explain -omics datasets.87 Second, more accurate biomass 

equations are needed. Whether these will be derived compu-

tationally or experimentally remains to be seen, and there are 

good arguments for both approaches. Third, a more accurate 

representation of flux branching at critical metabolic nodes 

is needed. This occurs when multiple enzymes can consume 

the same metabolite. Ultimately, the laws of thermodynamics 

(including enzyme availability) determine how that metabolite 

is distributed among the competing enzymes. Current methods 

of FBA, pFBA, FVA, ROOM (etc) do not consider this level 

of detail. FBrAtio provides this capability, though significant 
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strides are needed to first translate the biophysical constraints 

into flux ratio constraints. Finally, the roles of redox states in 

product secretion profiles and the influx/efflux of protons 

across the cell membrane need to be included as constraints 

in GEMs. In addition, efforts in these areas will supplement 

the many useful emerging tools that are focusing on genomic 

regulation and -omics dataset integrations. All of these will 

improve genome-scale modeling accuracy, which is needed 

for deriving effective metabolic engineering strategies.
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