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Abstract: Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths 

worldwide. As with other cancers, CRC is a genetic disease, however, several risk factors 

including diet and chronic colitis predispose to the disease. Mutations in the tumor suppressor 

adenomatous polyposis coli (APC) initiate most cases of CRC. Recent data from mouse models 

suggest that APC mutations and colitis are not completely independent factors in colorectal 

carcinogenesis. Here, we review the evidence supporting an interaction between APC muta-

tions and chronic colitis. We will also discuss possible pathophysiologic mechanisms behind 

this interaction.

Keywords: rodent model, colon cancer, adenomatous polyposis coli, APC, tumor suppressor, 
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Introduction
Colorectal cancer (CRC) is the fourth largest cancer killer worldwide and accounts 

for about 9% of cancer related deaths in the Unites States.1 CRC is a genetic dis-

ease that results from accumulation of mutations in tumor suppressor genes and 

proto-oncogenes.2 There are many factors that increase CRC risk, including age, diet, 

ethnic background, known genetic alterations, family history of the disease, and chronic 

colon inflammation (colitis).3 Mouse and rat models developed to study CRC have 

confirmed some of the risk factors elucidated from human cases. These models also 

revealed many of the molecular events underlying different risk factors and interactions 

between various risk factors.4,5 In this review we will discuss the interaction between 

the most common genetic alteration in CRC, mutations in the tumor suppressor APC, 

and a major predisposing factor for CRC, chronic colitis, as illuminated by studies 

of rodent models.

APC structure, functions, Wnt signaling
Mutations in APC are the most prevalent among genetic alterations found in CRC.6 

These APC mutations occur early during CRC tumorigenesis and are considered the 

initiating events of CRC.2 In addition to the frequent somatic APC mutations, a more 

rare inheritance of a germline APC mutation in familial adenomatous polyposis (FAP) 

patients leads to development of tens to thousands of colonic adenomatous polyps.7,8 

Although benign, these polyps have, on average, a 1%–5% chance of undergoing 

malignant transformation. Considering the number of polyps that typically develop in 

FAP patients, CRC is nearly inevitable, unless the colon is surgically resected.9
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The APC gene encodes a large multidomain protein, 

2,843 amino acids, that interacts with many other proteins 

and is implicated in multiple cellular processes.10,11 The 

most characterized function of APC is to antagonize Wnt 

signaling-induced cellular proliferation by destroying the 

oncoprotein β-catenin.12 APC is a component of a multipro-

tein cytoplasmic complex that phosphorylates and targets 

β-catenin for proteasome-mediated degradation. In the 

presence of Wnt ligand, or in the absence of functional APC, 

β-catenin accumulates in the cytoplasm and translocates to 

the nucleus, where it binds to the transcriptional cofactor 

TCF/LEF to alter the expression of Wnt target genes.13 Most 

β-catenin-responsive genes are induced eg, MYC, CyclinD1, 

and AXIN2; and a minority are downregulated, eg, HATH114–17 

(for an updated list of Wnt target genes see the Wnt homep-

age http://www.stanford.edu/group/nusselab/cgi-bin/wnt/

target_genes).

Wnt signaling plays an important role in maintaining the 

intestinal epithelial architecture.18 The intestine is lined by a 

single layer of columnar epithelial cells that are arranged in 

finger-like projections into the lumen (villi, only in the small 

intestine) and sac-like invaginations (crypts, in both the small 

and large intestines). Stromal cells at the crypt base secrete 

Wnt ligands that maintain a gradient Wnt concentration 

along the length of the crypt. Intestinal stem cells located 

at the crypt base (highest concentration of Wnt) divide to 

maintain the stem cell population and also produce progenitor 

transit amplifying cells (TA).19 TA cells further divide until 

they reach the upper one-third of the crypt (with lower Wnt 

concentration) where they start to differentiate into various 

adult cell types.13,20 The inability of mutant APC to antagonize 

Wnt signaling results in continuing proliferation, lack of dif-

ferentiation, and intestinal tumor formation.21–23

Wnt-independent roles of APC include regulation of 

cellular adhesion, migration, cytoskeletal organization, 

spindle formation, cellular differentiation, and chromo-

some segregation.10,24 APC coimmunoprecipitates with the 

adherens junction protein, β-catenin.25,26 Full-length, but not 

truncated, APC colocalizes with microtubules and also con-

centrates near the leading edge of migrating epithelial cells.27 

This microtubule interaction involves the C-terminal part of 

APC and is unrelated to Wnt antagonism.28 APC interacts 

with the microtubule-associated protein EB129,30 and with 

the intermediate filament proteins Lamin B1 and Keratin 81 

in cultured cells.31 Mutations in APC have been associated 

with chromosomal instability in both colon cancer cell lines 

and mouse embryonic stem cells.24,32 Moreover, in mouse 

intestinal epithelial cells, Apc mutations affect the sensitivity 

of cultured cells to microtubule poisons, inhibiting spindle 

assembly checkpoint-induced mitotic arrest in response to 

low doses of microtubule poisons.33

In addition to the cytoplasmic functions described above, 

APC moves between the cytoplasm and the nucleus.34–36 This 

nucleo–cytoplasmic shuttling is aided by two nuclear local-

ization signals (NLS) in the C-terminal half of APC and five 

nuclear export signals.36,37 Nuclear APC can antagonize Wnt 

signaling by sequestering nuclear β-catenin from interaction 

with the TCF/LEF transcription factor.35,38

Other proposed functions for nuclear APC include DNA 

synthesis, cell cycle regulation, and DNA repair.36 APC inter-

acts with Topoisomerase IIα, an enzyme essential in DNA 

replication and cell cycle progression.39,40 APC also interacts 

with PCNA, FEN-1, and polymerase-β, components of long 

patch-base excision repair (LP-BER),41–45 and affects CREB-

C/EBP- mediated transcription.46 Although the significance is 

not completely understood, APC appears to directly interact 

with A/T-rich DNA sequences.47 It is important to note that 

cancer-associated mutations in APC usually result in deletion 

of the C-terminus of the protein, including several protein 

interaction domains and both NLS.48

Modeling Apc in rodents
To study APC biological functions in development and can-

cer, several mouse and rat models have been made. A more 

comprehensive review of these models are provided in other 

articles.4,5 Most of these models have mutations resulting in 

truncated Apc, with lengths ranging from complete deletion 

to deletion of only the C-terminal 300 amino acids. Figure 

1 shows protein products resulting from Apc mutations in 

rodent models that will be discussed in this review. These 

models displayed some of the same phenotypes as patients 

with germ line mutations of APC.5 Mice with Apc truncation 

involving at least the C-terminal half of Apc develop intesti-

nal tumors, though the number of tumors does not correlate 

with the extent of truncation.4 As in FAP patients, Apc trun-

cating mutations in these models are lethal in a homozygous 

state, and tumor development requires mutation or loss of the 

other (wild type) Apc allele.5 Tumors from these mouse mod-

els resemble those found in patients at both the histological 

and molecular levels.49 However, the mouse tumors mainly 

develop in small intestine, whereas FAP patients harbor 

mostly colonic tumors.4 Rats with a mutation that truncates 

Apc at amino acid 1137 develop tumors in both the small and 

large intestine.50 In addition, unlike in humans, progression 

to carcinoma is not typically seen in most Apc mutant mice, 

presumably because of their limited lifespan.51 There are also 
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Figure 1 Apc mutant rodent models.
Notes: The 2,843 amino acid-long Apc protein with binding domains marked as follows: APC, homodimerization; Crm1/Exportin 1 binds NES to mediate nuclear export; 
PCNA (orange line), processivity factor for DNA polymerase δ; Eb1, binds and regulates MT plus ends. Shown below the schematic are the Apc proteins from rodent models 
referenced in this review.
Abbreviations: PCNA, proliferating cell nuclear antigen; MT, microtubule; Eb1, end binding 1; Dlg, discs large; NLS, nuclear localization signals.

some differences in the extraintestinal phenotypes in rodent 

Apc models and human FAP cases.4,5 Recently, several new 

Apc rodent models have been generated to facilitate testing 

the function of a specific region or subcellular localization of 

Apc. These include a rat model with a shorter truncation (Apc 

KAD rat),52 and mouse models with interstitial mutations 

deleting a specific Apc domain (Apc∆SAMP)53 or disrupting 

Apc nuclear localization signals (ApcmNLS).54

In addition to rodent models with germ line Apc muta-

tions, several models use LoxP-Cre technology to delete 

all, or portions, of Apc in a conditional manner.5 In this 

system, deletion of a genomic region flanked by two LoxP1 

sites is induced by expression of Cre recombinase enzyme. 

Cre-mediated deletion is specified by placing Cre under the 

control of a tissue-specific, developmental stage-specific, 

or drug-inducible promoter, or by infecting the tissue with 

adenovirus that expresses Cre recombinase.5 CPC–APC, 

Apc580D, and Apc∆468 are three such models discussed further 

in this review (Figure 1).

Chronic colitis
Besides APC mutations, other factors such as chronic 

inflammation increase risk of CRC.55 Inflammation is an 

immunological reaction to protect from harmful agents, 

including invading microorganisms.56,57 An estimated 15% 

of all cancers are associated with chronic inflammation.58 

For the colon, patients with an inflammatory bowel disease 

(IBD, ulcerative colitis, or Crohn’s disease) have 2–4 times 

increased risk of CRC compared to the general population.55 

This colitis-associated CRC is more aggressive and has a 

relatively poor prognosis.59 Many inflammatory mediators 

have roles in the protumorigenic effects of IBD-associated 

inflammation.55,59 These mediators are secreted by inflamma-

tory as well as epithelial cells, and affect cellular survival, 

proliferation, apoptosis, and differentiation.55,59

Modeling chronic colitis in rodents
To facilitate studying colitis, a dextran sodium sulfate (DSS) 

model was developed in the rat and adapted to both hamster 

and mouse.60–63 In this model, colonic inflammation is usually 

induced by administration of DSS (1%–4%) in drinking water 

for 3–7 days. Mice are then typically given untreated water 

for 2–4 weeks, with the cycle repeated up to four times.61

The DSS model appears similar to human ulcerative 

colitis at both the pathological and molecular levels.64 The 

pathological changes seen during the first DSS cycle in 

murine colons include loss of crypt structure and ulceration, 

symptoms that are also seen in the acute phase of the human 

disease.65 Following the first cycle, mucosal regeneration, 

crypt branching and shortening, glandular disorder, and 

diarrhea are also seen; these also occur in the chronic phase 

of ulcerative colitis in humans. As with human IBD, mice 

treated with DSS also show an increased incidence of colonic 

tumors that varies somewhat based on the protocol of DSS 

treatment.65,66 For Swiss mice treated with four cycles (7 days 

each) of 4% DSS, the colon tumor incidence is about 37.5% 

at 120 days and more than half of the lesions that develop 

in DSS-treated mice are flat, similar to those seen in the 

human disease.66 Some tumors in this model show malig-

nant transformation.66 Molecular changes in tumors from 

DSS-treated mice also recapitulate those in human colitis-

associated colorectal carcinogenesis.66,67

Administration of a mutagen increases the incidence 

of colonic tumors in the murine DSS model.64 The most 
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commonly used mutagen is azoxymethane (AOM), which 

induces O6-methylguanine DNA adducts resulting in GA 

transitions.64 A single intraperitoneal dose of AOM increases 

the incidence of colonic cancer in DSS-treated mice to 

100%.64 Another advantage of including a mutagen in the 

protocol is that it allows reduction of the DSS dose in mice, 

and decreases the mortality from DSS-associated acute 

colitis. Again, different groups use different regimens of 

AOM treatment: single or multiple doses of 7.5–20 mg/kg. 

A single AOM dose of 10 mg/kg alone without DSS treatment 

is not sufficient to induce tumors in wild-type mice.64

β-catenin mutations in exon 3 are detected in most 

tumors from AOM–DSS-treated mice.68 These mutations 

are expected to prevent phosphorylation and targeting of 

β-catenin for destruction, resulting in cellular accumulation 

and nuclear translocation of β-catenin, and promiscuous 

activation of Wnt signaling.68 On the other hand, many AOM-

induced tumors in rats have Apc mutations.69 Both mice and 

rats treated with AOM–DSS have activating mutations of the 

proto-oncogene, Kras, in later stage tumors.68 Wnt and RAS 

pathways are typically activated in human CRC.2

Intestinal epithelial barrier and gut 
microbiome
Colon epithelial cells are exposed to a unique external 

environment. The colon lumen contains hard fecal matter, 

posing a potential threat of mechanical injury.70 In addition, 

the colon is inhabited by over one hundred trillion bacterial 

cells (almost ten times the number of cells in an adult human). 

These gut microbes consume organic materials and secrete 

various secondary metabolites.71,72 Intestinal epithelial cells 

have several lines of defense that prevent bacterial invasion 

or diffusion of harmful substances into the body while allow-

ing absorption of nutrients and beneficial substances.73 These 

combined structural and physiological defenses are termed 

the “intestinal epithelial barrier”.70,74

There are at least seven contributors to the intestinal epi-

thelial barrier (Figure 2). First is the actual physical barrier 

created by mucus, which is continuously secreted by goblet 

cells.75 This mucus is formed of two layers; an outer loose 

layer and an inner adherent layer. The outer mucus lubricates 

the solid contents of the colon to prevent mechanical injury 

and also washes off microorganisms to prevent colonization. 

1. Mucus secreted
    by Goblet cells is
    physical barrier

6. Gut associated
    lymphoid tissue
    (GALT)

M cell

Crypt

5.  Paneth cells secrete
     anti-bacterial substances

3.  Continuous
     epithelial cell
     replacement

7.  TLR or NLR
     recognize PAMPs

4.  Enteroendocrine
     secretions increase
     intestinal movement

Villus

2. Tight

junctions

Figure 2 Intestinal epithelial barrier.
Notes: Protecting the body from invasion by intestinal microbes requires many layers of defense. This illustration depicts the small intestine. The colon would have similar 
components but lack Paneth cells and the villus structure. Goblet cells (green); tight junctions (red); enteroendocrine cells (orange); Paneth cells (yellow).
Abbreviations: DC, dendritic cell; T, T-cell; B, B-cell; TLR, Toll-like receptors; NLR, Nod-like receptors; PAMP, pathogen-associated molecular patterns.
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The inner mucus layer prevents contact of microorganisms 

and their products with the underlying epithelial cells.75 

Second, epithelial cells lining the colon form a continuous 

sheet with tight junctions that further prevent flora and harm-

ful molecules from penetration.76 Third, the continuous turn-

over of intestinal epithelial cells ensures rapid healing after 

any damage or ulceration.70,77 Fourth, specialized epithelial 

cells, enteroendocrine cells, respond to bacterial invasion 

or toxic substances by secreting active amines to increase 

intestinal movement and fluid secretion, thereby washing off 

potential invaders.78 Fifth, in the small intestine, other special-

ized epithelial cells called Paneth cells secrete antibacterial 

substances. Sixth, intestinal tissue also contains aggregations 

of immune cells (gut-associated lymphoid tissues [GALT] 

and other immune cells) that can detect foreign antigens and 

defend the body against them. M-cells also contribute by 

engulfing antigens and bacteria from the lumen and trans-

porting them to antigen presenting cells for immunological 

processing.70 Seventh, intestinal epithelial cells themselves 

detect different microbes and react to them by expressing 

receptors that can recognize pathogen-associated molecular 

patterns (PAMP) including Toll-like receptors (TLR) and 

Nod-like receptors (NLR). These receptors do not recognize 

specific antigens but specific molecular signatures associated 

with pathogens eg, methylated DNA and peptidoglycans.79

Colitis and APC mutations
CRC is fundamentally a genetic disease, the result of accu-

mulated mutations in tumor suppressor genes and oncogenes.2 

But the nature of the mutated genes and the order of their 

mutation can vary with different precipitating factors.67,80,81 

Activation of Wnt signaling is seen in the vast majority of 

CRCs.2 Other signaling pathways that are commonly altered 

during CRC progression include activation of K-ras, p53, and 

TGF-β.82 Alterations in the same pathways are frequently seen 

in cases with colitis-associated CRC. In addition, activation 

of NF-κΒ and STAT3 pathways are also detected in colitis-

associated CRC. The sequence and role of these pathway 

alterations in the development of CRC have been reviewed 

previously.59 Here, we will focus on genetic mutations of the 

tumor suppressor APC.

Mutation of APC is by far the most common genetic event 

seen in CRC that leads to Wnt signal activation. Curiously, 

APC mutations are not detected in other Wnt-dependent 

tumors to nearly the same extent as seen in CRC. Rather, in 

non-colonic tumors, mutations in other Wnt components, are 

more commonly found,12 suggesting a colon-specific protec-

tive function of APC that is selected against during CRC 

development. Furthermore, data from AOM–DSS models 

suggest that Wnt signal activation alone is not sufficient for 

effective initiation of colon tumorigenesis. Injection of mice 

with a single dose of AOM, expected to induce oncogenic 

β-catenin mutations which activate Wnt signaling, results 

in no tumors or only a very low incidence of tumors.61,68 

However, combing AOM with DSS-induced inflammation 

results in robust tumor formation. Moreover, patients and 

mice with germ line APC/Apc mutations develop intestinal 

tumors with 100% penetrance.5,9

The data supporting an association between APC muta-

tions and inflammation are overwhelming. Inflammation can 

greatly increase intestinal tumorigenesis in rodent models 

with germ line Apc mutations. DSS treatment of ApcMin/+ 

mice increases their colon tumor multiplicity by 15–30-fold.83 

Unlike AOM-induced tumors in wild-type mice treated with 

DSS, which show β-catenin stabilizing mutations, colonic 

tumors in DSS-treated ApcMin/+ mice typically show loss of 

the wild-type Apc allele.83 The latter mechanism is similar 

to that seen in tumors from ApcMin/+ mice not treated with 

DSS.84 Of note, the multiplicity of tumors in DSS-treated 

ApcMin/+ mice is higher than in wild-type mice treated with 

the mutagen AOM followed by DSS.83 Collectively, these data 

strongly support a colon-specific tumor suppressor function 

for APC beyond that as a Wnt signal antagonist, potentially 

to control colitis.

Experimental induction of inflammation in mouse intesti-

nal tumor models by methods other than DSS administration 

also increases tumorigenesis. Germ line deletion of Il-10 (an 

anti-inflammatory cytokines) or single immunoglobulin Il-1 

receptor-related (SIGIRR) molecule increases intestinal 

tumors in ApcMin/+ mice.85,86 Transgenic expression of Il-8 

(a proinflammatory cytokine) enhances tumorigenesis in 

both AOM–DSS and ApcMin/+ models.87 In addition, Nrf2 

knockout mice display increased oxidative stress, increased 

inflammatory markers, and colitis and accelerated intestinal 

tumorigenesis.88,89 Conversely, reducing inflammation protects 

from intestinal tumorigenesis. Nonsteroidal anti-inflammatory 

drugs (NSAIDs) reduce polyp formation in FAP patients as 

well as in ApcMin/+, Apc∆474/+, and Apc1309/+ mouse models.90–94 

Experimental genetic deletion of proinflammatory mediators 

CXCR2, CD24, TNF-α, and epimorphin significantly reduces 

intestinal tumor numbers in ApcMin/+ mice.95–98

Inflammation might also contribute to some other known 

risk and protective factors in CRC. For example, high fat 

diets and obesity predispose humans to CRC, ApcMin/+ mice 

to increased intestinal polyposis, and AOM-treated mice to 

pre-cancerous colon lesions.99,100 Obesity has been associated 
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with adipose tissue macrophage malfunction and low-level 

inflammation.101–103 A recent report showed increased inflam-

matory mediators in ApcMin/+ mice on high fat diet relative to 

ApcMin/+ mice on regular lab diet.104 In addition, many natural 

products including curcumin, grape antioxidant fibers, and 

brown rice reduce colon tumors in various mouse models, 

presumably by reducing inflammation.105–109

The mechanisms by which inflammation can enhance colon 

tumorigenesis are not completely delineated. Inflammation 

activates many pathways that synergize with Wnt signal 

activation in CRC tumorigenesis including AKT, KRAS, 

BRAF, HIF1-α, and TGF-β. DNA damage and epigenetic 

changes that are associated with inflammation could also 

contribute to tumor formation.59

Many inflammatory pathways converge to activate the 

prosurvival NF-κB pathway,59 which is also activated in 

colonic mucosa from IBD patients.110 NF-κB pathway activa-

tion increases proliferation and decreases apoptosis in CRC 

cell lines and mouse colon mucosa,110,111 drugs that inhibit the 

NF-κB pathway decrease intestinal tumorigenesis in ApcMin/+ 

mice.112 Aspirin, an NSAID that decreases intestinal poly-

posis in both mouse models and FAP patients and protects 

from CRC, inhibits the NF-κB pathway and also increases 

Apc/APC expression.113

Inflammation can increase DNA damage and acceler-

ate mutagenesis. The rate of reactive oxygen species (ROS) 

production, including nitric oxide (NO), is augmented in 

inflamed tissues. ROS are genotoxic and increase DNA muta-

tion rates.55,58,114,115 Inhibiting NO production reduces intestinal 

polyp formation in ApcMin/+ mice as well as inflammatory mod-

els of colitis.116,117 Notably, activation of the NF-κB pathway 

by constitutive activation of its upstream activator, IKKβ, 

enhances intestinal polyposis and elevates DNA damage in 

Apc580D/+ mice.118 NO synthase inhibitors reduce this DNA dam-

age and intestinal tumorigenesis, suggesting that accelerating 

Apc LOH (loss of heterozygosity) due to the DNA damaging 

effect of NO is the cause of enhanced tumorigenicity in these 

mice.118 Inflammation may also induce DNA damage by 

increasing the production of other mutagenic factors including 

trans-4-hydroxy-2-nonenal from the activated inflammatory 

cells, which can further induce chromosomal breakage in 

nearby epithelial cells.119 Moreover, chronic inflammation can 

also reduce DNA mismatch repair proteins.120,121

Chronic inflammation is also associated with epigenetic 

changes including changes in miRNA, DNA hypermethyla-

tion, and aberrant methyl histone markings.122 Colitis leads 

to upregulation of miRNA-155123; miRNA-155 targets APC 

and thus, activates β-catenin.124 The protumorigenic effect of 

chronic colitis has also been linked to prostaglandin (PG) for-

mation through induction of cyclooxygenase-2 (COX-2).125 

COX-2 is the rate-limiting step in PGE2 formation from 

arachidonic acid.122 Both Cox-2 and PGE2 promote Wnt 

signaling, increase cellular proliferation, inhibit apopto-

sis, promote angiogenesis, and enhance metastasis.126–129 

Conditional deletion of Cox-2 results in significant reduction 

of intestinal tumors in ApcMin/+ and Apc∆716/+ mice,130,131 Cox-2 

is also targeted by NSAIDs and selective Cox-2 inhibitors 

such as Celebrex, both of which reduce intestinal tumori-

genesis in patients and mouse models with germ line APC/

Apc mutations.122

APC mutations and inflammation
In the previous section we presented evidence that inflam-

mation accelerates intestinal tumorigenesis in the presence 

of Apc mutations. However, there is evidence that Apc 

mutations can enhance colitis. Proinflammatory mediators 

Cox-1, Cox-2, MIP-2, OPN, CXCR-2, and Gro-α mRNA 

are upregulated in colonic polyps in ApcMin/+ mice relative 

to epithelial cells from normal mice.132 Of these genes, only 

Cox-2 is a defined Wnt target.133,134 The other mediators have 

not been linked to activated Wnt signaling resulting from Apc 

mutations. In addition, mRNA and serum protein levels of 

proinflammatory cytokines MCP-1, IL-6, IL-1β, and TNF-α 

increase with the progression of intestinal tumorigenesis and 

correlate with tumor size.135 Moreover, a global expression 

analysis showed differential expression of inflammatory 

genes, Lcn2 and N4wbp4, in ApcMin/+ polyps.136 In another 

mouse model (CPC–APC), conditional truncation of Apc 

in the distal part of the small intestine and colon resulted in 

inflammatory cell infiltration and upregulation of Il-17 and 

Il-23 in the developing polyps.137

Recently, we described a mouse model with a germ line 

Apc mutation that compromises the ability of Apc to locate 

to the nucleus.54 These ApcmNLS/mNLS mice only rarely develop 

tumors, and homozygous mutant mice are viable. However, 

the ApcmNLS allele increases tumor formation when combined 

with the ApcMin allele (ApcmNLS/Min mice).54 Notably, ApcmNLS/mNLS 

mice have higher expression of inflammatory mediators 

Cox-2 and MIP-2 and are more susceptible to DSS-induced 

colitis and AOM–DSS-induced colon tumorigenesis.138 Rats 

with germ line Apc mutation resulting in truncation of the 

C-terminal 300 amino acids (KAD rats) do not develop tumors 

but are also more susceptible to DSS-induced inflammation 

and AOM–DSS-induced colon tumorigenesis.139

APC mutation can induce colitis by several mechanisms. 

First, APC mutations can decrease mucus production and 
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therefore reduce the barrier between gut microbes and 

intestinal tissues.137 Apc normally functions in promoting 

cellular differentiation of intestinal lineages including mucus-

producing goblet cells.23,140 ApcmNLS/mNLS mice have reduced 

expression of Hath-1 and fewer goblet cells in their small 

intestines and less Muc-2 mRNA in their colons, relative 

to their wild-type littermates.54,138 Hath-1 is a transcription 

factor that participates in goblet cell differentiation and is 

negatively regulated by Wnt signaling.17,141 Muc-2 is the 

major protective mucin in the colon. Muc-2 knockout mice 

develop colitis and have spontaneous colonic tumors.142,143 

Muc-2 mutation also enhances intestinal tumorigenesis in 

ApcMin/+ mice.143,144 Furthermore, induction of inflamma-

tion in ApcmNLS/mNLS mice using DSS results in significantly 

fewer goblet cells and reduced Muc-2 mRNA, relative to 

DSS-treated wild-type mice.138 Goblet cell differentiation 

requires low Notch signal and treating ApcMin/+ mice with a 

γ-secretase inhibitor, inhibited Notch signaling and increased 

goblet cell differentiation in intestinal tumors.145 A potential 

link between Notch signaling and APC is that APC is in a 

double negative feedback loop with the transcription inhibitor 

Msi-1.146 Msi-1 activates Notch signaling by inhibiting the 

Notch repressor, Numb.147 In cases of Apc mutation, Msi-1 

is upregulated; activating Notch signaling.23,148 However, 

a direct role of Msi-1 in goblet cell differentiation has not 

been examined. Finally, FAP patients and CPC–APC mice 

with conditional truncation of APC/Apc showed reduced 

mucus production of polyps, which displayed Apc LOH.137 

Colonic mucosa in AOM-treated rats as well as FAP patients 

shows foci with depleted mucin.149,150 These mucin-depleted 

foci are correlated with tumor number and have high rates 

of Apc mutations.151 Apc-mutant (PIRC) rats also show 

mucin-depleted foci that increase in number as the rats age.152 

Notably, the NSAID sulindac, reduces the number of polyps 

as well as mucin-depleted foci in PIRC rats.152 Collectively, 

these data suggest that Apc mutations predispose to the pre-

cancerous mucin-depleted foci.

Alteration of Apc can also affect other intestinal epithe-

lial barrier activities. APC loss effects localization of tight 

junction protein ZO-1.153 Loss of APC and upregulated Wnt 

signaling are also associated with increased expression of 

tight junction protein claudin-1 in CRCs.154 Further, inducible 

Apc truncation in CPC–APC mice leads to reduced junctional 

claudin-3, -4, -5, and -7 and decreased levels of JAM-C 

(junctional adhesion molecule-C) mRNA.137 The C-terminus 

of Apc binds to the junctional protein DLG (Figure 1). In 

KAD rats, Dlg5 fails to localize to the junction in endothelial 

cells, resulting in delayed healing after DSS-induced inflam-

mation.155 Finally, APC interacts with cytoskeletal proteins 

including those of microtubules and intermediate filaments, 

which are important in formation and maintenance of tight 

junctions.31,156,157 Apc mutations alter cytoskeletal organiza-

tion in intestinal epithelial cells and affect cell polarity.158 

Whether these changes in epithelial organization enhance 

colitis is not clear.

Apc mutations might also induce inflammation by acti-

vating Wnt signaling. Cox-2 and iNOS are Wnt targets.134,159 

Cox-2 is the rate-limiting enzyme in PGE2 synthesis. PGE2 

is involved in processes that lead to inflammation, including, 

vasodilation, increasing vascular permeability, and chemo-

attraction of inflammatory cells.59

APC, colitis, and microbiome in CRC
The role of intestinal flora in health and disease is getting 

increasing attention of late.160,161 The development of tools 

such as deep sequencing has allowed rapid analysis of dif-

ferent intestinal bacteria. The gastrointestinal tract in general 

and especially the distal portion is home to a large number of 

microorganisms. The relationship between these florae and 

the host is mostly symbiotic.160,161 The host provides a niche 

and nutrients, while intestinal florae provide essential vita-

mins and are crucial for the development of the host immune 

system. Particular intestinal florae also prevent overgrowth 

of pathogenic microorganisms by competing with them for 

limited resources. However, changes in the number, type, or 

the relative abundance of different intestinal microorganisms 

(dysbiosis) have been related to many pathological condi-

tions including IBD and CRC.160,162 The challenging task for 

the intestinal epithelial barrier is to regulate the intestinal 

microbiome by allowing the growth of beneficial species 

and preventing the growth and invasion of pathogenic and 

opportunistic organisms.

Disruption of the intestinal epithelial barrier is a hallmark 

of IBD.163 However, the relationship between the epithelial 

barrier, intestinal florae, and inflammation has multiple levels 

of complexity. Mucus secretion is stimulated by bacterial 

colonization.164 Germ-free mice have a thin mucus layer, 

which can be restored to normal thickness by bacterial prod-

ucts including peptidoglycans and lipopolysaccharides.164,165 

Bacterial products including butyrate and short chain fatty 

acids also can induce Muc2 transcription via c-Fos/c-Jun and 

by epigenetic histone alterations.166–169 On the other hand, 

microbes or their metabolic products may induce inflam-

matory reactions in the colon. Some intestinal florae such as 

Fusobacteria and Surpulina are enriched in the mucus layer 

covering regions of enteric inflammation,170,171 consistent 
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with their ability to dissolve the mucus layer and thus provide 

access to other microbes.172 Clostridia-like gram-positive seg-

mented filamentous bacteria induce intestinal inflammation 

which predisposes to colitis but also protects mice from some 

enteric infections.173 In contrast, some bacterial products 

such as short chain fatty acids and butyrate inhibit colitis by 

stimulating epithelial cells to secrete the anti-inflammatory 

cytokines IL-10 and IL-18.174–176

Several mechanisms linking the colonic microbiome to 

CRC have been proposed. In human patients, the florae of 

colonic adenomas and adenocarcinomas are enriched with 

fusobacterial species relative to normal colon tissue.177,178 

Fusobacteria enhance intestinal tumorigenesis in ApcMin/+ 

mice resulting in a proinflammatory gene expression sig-

nature in the tumor cells.177 Reducing microbial-induced 

inflammation by deleting the PAMP pathway adaptor 

protein Myd88 decreases intestinal tumors in ApcMin/+ mice 

and colon tumors in AOM-treated mice.179,180 Furthermore, 

transplantation of bone marrow from mice with mutations 

in genes encoding PAMP adaptor proteins Myd88, Tlr2, 4, 

and 9 reduces inflammation and tumor load in CPC–APC 

mice.137 Finally, deletion of anti-inflammatory cytokine 

Il-10 alters the intestinal microbiota and increases the 

intestinal tumor number in Apc∆468 mice; treating these 

mice with broad-spectrum antibiotics decreased the overall 

microbial diversity and also decreased the intestinal tumor 

multiplicity.181

Microorganisms can also secrete carcinogenic metabo-

lites that can mutate DNA. In addition to ROS produced by 

inflammatory cells as the result of bacterial-induced inflam-

mation, some colonic bacteria including the gram-positive 

Enterococcus faecalis produce hydroxyl radicals.182–184 

Still, other colon-inhabitant gram-negative, Escherichia 

coli, produce a toxin that can cause DNA damage and 

CRC.185 Bacteria may also secrete chemicals that directly 

induce proliferation. For example, the exotoxin fragilysin 

secreted by some Bacteroid species induces c-Myc which 

stimulates cellular proliferation.186 Bacterial metabolites 

such as H
2
S are produced by many Enterobacterial species 

commonly found in the normal colon.187 H
2
S can activate 

the RAS-MEK pathway and induce cellular proliferation 

in mice.188
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Figure 3 Potential roles for APC in inflammation.
Notes: APC normally promotes differentiation of goblet cells which generate and secrete mucus. Protective mucus layers provide a physical barrier between luminal 
microbes and the epithelial cells lining the intestine. APC interacts with various junctional proteins, further contributing to a barrier between the luminal contents and the 
immune cells of the stroma. APC regulates expression of genes, some of which are involved in inflammation. Microbial breach of the intestinal barrier results in inflammation. 
Consequences of inflammation include DNA damage and epigenetic changes that can result in additional mutation of tumor suppressor genes and oncogenes that further 
promote colorectal carcinogenesis.
Abbreviations: APC, adenomatous polyposis coli; iNOS, induced nitric oxide synthase; CRC, colorectal cancer; ROS, reactive oxygen species; COX-2, cyclooxygenase-2.
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Several observations made in mouse models point to an 

interaction between genetic lesions, intestinal florae and CRC. 

Smad3-deficient mice develop colon tumors only in the pres-

ence of helicobacter infection.189 Tbx2 and Rag2-/- ulcerative 

colitis (TRUC) mice develop colitis and colitis-associated 

colon cancer, but not when raised in a germ-free environ-

ment.190 Similarly, Il10-/- mice develop colitis-associated 

colon tumors only if they have intestinal bacteria.191 NLRP6 

is a component of the innate immune response that senses 

microbes, and NLRP6 deletion in intestinal epithelial cells 

induces colitis and colitis-associated tumorigenesis.192 These 

NLRP6-deficient mice also have changes in the bacterial flora 

composition with more abundant Bacteroids in the colon. 

Remarkably, cohousing these NLRP6-mutant mice with wild-

type mice results in development of colitis and colon tumors 

in the wild-type mice, consistent with transmissible tumor 

promoter.192,193 A similar transmissible, tumor-promoter has 

been described in mice with mutations in other compo-

nents of the innate immune response, NOD2 and RIP2.194 

Furthermore, expression of the secreted anti-inflammation 

mediator/antimicrobial, Pla2g2a in intestinal epithelial cells 

reduces the incidence of intestinal polyps in ApcMin/+ mice and 

in orthotopic xenografts of human colon cancer cells.195,196 

Notably, exogenous expression of the Pla2g2a gene pre-

vents colon tumorigenesis in Muc2-deficient mice.197

Although connections are starting to emerge, the precise 

relationship between the tumor suppressor Apc and intestinal 

flora is not well defined. ApcMin/+ mice raised in a germ-free 

environment develop fewer polyps than ApcMin/+ mice housed 

in standard conditions.198 However, this tumor reduction is 

statistically significant only in the middle portion of the small 

intestine, with no reduction in the number of tumors in the 

colon.198 This region specificity may represent a varied role 

for different microbial species in discrete regions of the gas-

trointestinal tract. On the other hand, Apc∆14/+ mice developed 

more polyps when raised in germ-free conditions than in 

standard housing conditions.199 Together, these data suggest 

an allele-specific interaction of Apc with the microbial con-

tent of the gut. Notably, mutations in ApcMin/+ and Apc∆14/+ are 

expected to result in truncated Apc proteins that differ by 403 

amino acids.5 The contrasting effect of germ-free conditions 

on polyp number in ApcMin/+ and Apc∆14/+could also represent 

other contributing factors that vary between the two experi-

mental conditions including other genetic loci and diet.4

Conclusion
The results gathered from studies of rodent CRC models 

reveal a complex interplay of genetics, inflammation, and 

the microbiome that gives rise to a cancer phenotype. APC 

is a major tumor suppressor in the colon. Although the 

most universally appreciated APC role is that of Wnt signal 

antagonist, APC is multifaceted. In this review, we describe 

an emerging role for APC in colitis. We propose that this 

APC role as regulator of the inflammatory response might 

be particularly critical in the colon and thus contribute to the 

high frequency of APC mutations seen in CRC compared to 

cancers of other tissues (Figure 3). Unearthing the precise 

role for APC in suppression of inflammation will expand 

the repertoire of therapeutic strategies aimed at rescuing the 

functions of this multifaceted and fascinating tumor sup-

pressor protein.
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