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Abstract: Foot-and-mouth disease remains one of the world’s most economically important 

diseases of livestock. It is caused by foot-and-mouth disease virus, a member of the picorna-

virus family. The virus replicates very rapidly and can be efficiently transmitted between hosts 

by a variety of routes. The disease has been effectively controlled in some parts of the world 

but remains endemic in many others, thus there is a constant risk of introduction of the disease 

into areas that are normally free of foot-and-mouth disease with potentially huge economic 

consequences. To reduce the need for large-scale culling of infected, and potentially infected, 

animals there has been significant effort to develop new vaccines against this disease which 

avoid some, or all, of the deficiencies of current vaccines. A major focus has been on the use of 

systems that express the structural proteins of the virus that self-assemble to generate “empty 

capsid” particles which share many features with the intact virus but lack the ribonucleic acid 

genome and are therefore non-infectious. Such particles can be “designed” to improve their 

stability or modify their antigenicity and can be produced without “high containment”  facilities. 

The development and use of such improved vaccines should assist in the global efforts to control 

this important disease.
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Introduction
Foot-and-mouth disease (FMD) is one of the most-feared diseases of farmed animals. 

It affects over 100 countries globally and many of the countries in Africa, the Middle 

East, and southern Asia experience FMD as an endemic disease. The disease continues 

to cause huge economic losses (estimated at around US$10,000,000,000 per year) 

on a global basis1 and can cause losses of this magnitude in a single country when 

incursions occur into a state that is normally FMD free (eg, in the UK in 2001). The 

latter outbreak affected over 2,000 premises and resulted in the slaughter of several 

million animals. Many of these animals were not actually infected but were culled to 

prevent further spread of the disease or for welfare reasons. The mass culling of ani-

mals is clearly undesirable and has generated renewed interest in the development of 

efficient and safe vaccines that can be used to assist in the control of FMD outbreaks. 

The economic impact of FMD means that there are large barriers to prevent trade in 

animals, and their products, from areas of the world with FMD.

FMD is caused by infection with foot-and-mouth disease virus (FMDV); this is 

the prototypic member of the Aphthovirus genus within the family Picornaviridae. 

As with all picornaviruses, FMDV has a positive-sense, single-stranded, ribonucleic 

acid (RNA) genome (Figure 1). Within the virus particle, a single copy of the genome 
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Figure 1 Structure of the FMDV genome.
Notes: The FMDV genome includes a single large open reading frame encoding a polyprotein. This coding region is flanked by the 5′-untranslated region (UTR) (ca 1,300 
nt) and a 3′-UTR (ca 90 nt). The RNA includes a polyA tail at the 3′ terminus. The 5′ UTR includes a poly(C) tract, of unknown function, and the iReS which directs the 
initiation of protein synthesis on the viral RNA. Two initiation codons are used (separated by 84 nt) to produce two forms of the first part of the polyprotein (the leader 
[L] protein), termed Lab and Lb.
Abbreviations: FMDV, foot-and-mouth disease virus; RNA, ribonucleic acid; iReS, internal ribosome entry site; VPg, viral protein-genome linked; nt, nucleotides;  
ca, circa.

is enclosed within a roughly spherical protein shell (capsid) 

which is about 30 nm in diameter. The capsid serves to pro-

tect the genome while the virus is outside of cells and also 

allows it to bind and subsequently gain entry to cells through 

interaction with specific cell-surface receptors (eg, certain 

integrins). Interaction of antibodies against the surface of the 

virus capsid is considered to be the major mechanism for neu-

tralizing FMDV infectivity. Thus vaccines to combat FMDV 

infection have been developed to generate antibodies against 

the capsid proteins. Current vaccines rely on the production of 

huge quantities of infectious FMDV, generally in large scale 

tissue culture systems, which is then chemically inactivated 

prior to inoculation into animals with an adjuvant.

The virus capsid is composed of 60 copies of four distinct 

proteins, termed VP1, VP2, VP3, and VP4 (see Figure 2), 

these are the structural proteins (SPs). The virus also produces 

eleven other different mature proteins (plus precursors) which 

are involved in the replication of the virus and/or combating 

host defense systems (see Characteristics of FMDV).

There are seven different serotypes of FMDV, namely O, 

A, C, Asia-1, Southern African Territories (SAT) 1, SAT 2, 

and SAT 3. There is no apparent cross protection between 

the serotypes, so animals that have been infected (or vac-

cinated) with one serotype of virus are not protected against 

other serotypes. Indeed, even within a single serotype there is 

considerable antigenic heterogeneity and thus vaccine match-

ing studies have been undertaken to identify the efficacy of 

particular vaccine strains in generating antibodies that block 

infectivity of new outbreak strains.

The immunity conferred by vaccination against FMDV 

is quite short-lived;2 it is commonly recommended, in areas 

with endemic disease, to revaccinate animals twice per year. 

In recent years, it has become usual to purify vaccine prepara-

tions to separate the virus particles (including the SPs) away 

from the non-structural proteins (NSPs). This can enable 

differentiation between animals that have been vaccinated 

(which will only have antibodies against the SPs) from those 

that have been infected (which can have antibodies against 

all the virus encoded proteins). However, vaccinated animals 

can still become sub-clinically infected which results in a 

low level immune response against the NSPs but a boost to 

the antibody response against the SPs.3 Hence, this differen-

tiation between infected and vaccinated animals (DIVA) is 

not perfect, especially since multiple rounds of vaccination, 

even with purified vaccines, can result in the induction of 

antibodies against NSPs which will be present at a low level 

in these vaccine preparations.

FMDV vaccine is heat labile and hence the maintenance 

of a “cold chain” for the vaccine before its administration is 

essential. A manufacturer may produce a good vaccine but 

if it is stored poorly then it may not function well when it is 

used and thus there is a need to determine vaccine quality, 

at the point of production, and also efficacy during vaccina-

tion campaigns.4

The text above indicates that there are a number of limita-

tions and problems associated with current FMDV vaccines 

(eg, lack of cross protection, short duration of immunity, labil-

ity, requirement for high containment facilities to produce it) 

and thus there is interest in developing improved vaccines 

which address at least some of these shortcomings. It may 

well be that there will not be a single solution to these different 

issues and indeed the most important features of a vaccine 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Virus Adaptation and Treatment 2015:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

13

Candidate vaccines to improve control of FMD

may depend on their planned use. For example, in a country 

that is normally disease-free, the highest priority may be to 

use a vaccine which induces rapid protection against disease 

caused by the single type of virus that has been  introduced. 

In contrast, in endemic areas (with poor infrastructure) which 

may have multiple serotypes of FMDV in circulation concur-

rently, it may be best to have a stable vaccine (without need 

for a cold-chain) which induces broad protection, ideally 

against multiple serotypes, if this is achievable.

Characteristics of FMD
FMD is highly contagious and affects cloven-hoofed farmed 

animals including cattle, pigs, sheep, and goats. It can also 

affect a large number (circa 70) of different wildlife species 

including, notably, the African buffalo (Syncerus caffer). 

Severity of clinical disease varies between the common 

domestic species, with pigs developing severe clinical illness, 

followed by cattle showing clear but less severe clinical signs, 

whilst the clinical course of the infection in sheep and goats 

may be very mild.5

The different serotypes of FMDV cause clinically 

indistinguishable signs of disease. The initial FMDV rep-

lication within infected animals is thought to occur within 

the epithelia of the pharyngeal mucosa.6,7 From here, the 

virus spreads through the lymphatic and vascular system to 

peripheral sites of secondary replication, characterized by the 

presence of stratified, cornified, squamous epithelia, such as 

the coronary bands and oral cavity. Infected animals develop 

transient viremia lasting for 2–3 days, which is effectively 

counteracted by the development of circulating anti-FMDV 

antibodies. The clinical disease follows a rapid time course 

and typically includes a sudden rise in body temperature 

Lab
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VP0

VP0

VP3

VP3
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Figure 2 Schematic diagram showing the production and assembly of FMDV capsid proteins.
Notes: The virus encoded polyprotein is cleaved, mainly by the virus encoded 3C protease (3Cpro) but the Leader protein (L) cleaves the L/VP0 junction. The capsid protein 
precursor (P1-2A) is processed to VP0, VP3, VP1, and 2A (a short peptide) and these proteins can self-assemble to form empty capsid particles. During virus infection, 
production of mature virus particles includes the encapsidation of the viral RNA genome and during this process cleavage of VP0 to VP4 and VP2 occurs. Only VP1, VP2, and 
VP3 are exposed on the surface of the virus particle, VP4 is entirely internal. The RNA genome (indicated as an orange line) within complete virus particles is absent from 
empty capsid particles which are therefore non-infectious.
Abbreviations: FMDV, foot-and-mouth disease virus; RNA, ribonucleic acid.
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and the development of vesicular lesions at peripheral areas 

of viral replication. Affected animals may display varying 

degrees of salivation, loss of appetite, and lameness according 

to the severity of lesions. The clinical course of the infection 

usually subsides within 7–14 days. However, many infected 

cattle (approximately 50%) may become FMDV “carriers”; 

these are defined as animals with asymptomatic, intermit-

tent, presence of infectious virus in the oropharyngeal fluid 

for more than 28 days after infection.8 Development of the 

“carrier” state is apparently unaffected by the presence of 

neutralizing antibodies in the circulation. Thus, both animals 

that are immunologically naïve at the time of exposure to 

FMDV, as well as those with circulating antibodies due to 

vaccination or previous exposure to the virus can become 

FMDV “carriers”. The duration of the “carrier” state var-

ies between species, with the longest duration recorded in 

African buffalo (5 years) followed by cattle (2 years) and 

sheep (9 months).9,10 It is generally considered that pigs do 

not become “carriers”5 but they may retain viral RNA for 

an extensive period (see below).11 Since “carrier animals” 

are a potential source of infectious virus, their presence is 

considered unacceptable in areas free of FMD, however it 

has proven very difficult to demonstrate transmission of virus 

from carriers to naïve animals.5,12

Transmission of the virus can occur by a variety of dif-

ferent routes. Cattle can easily be infected by airborne virus 

whereas pigs need close contact with other infected animals 

since a gap of .70 cm is sufficient to block transmission 

of the virus from one pig to another.13 In some instances, it 

appears that long distance (.100 km) transmission of the 

virus through the air to cattle has occurred; this has mainly 

been over water and may require specific weather conditions. 

During outbreaks, disease spread normally occurs on a rela-

tively local basis (within a few km) but clearly transporta-

tion of infected animals can seed new outbreaks in diverse 

 locations. Once infected, pigs exhale large quantities of virus 

and hence a common route of transmission is from infected 

pigs to cattle located downwind of these animals.5

Characteristics of FMDV
The FMDV life cycle is very short, indeed a single cell can 

be infected and produce .105 new virus particles in about 

5 hours. The replication of the virus is carried out entirely 

within the cytoplasm of the cell and the viral RNA alone is 

sufficient to initiate an infection if it is delivered to the cyto-

plasm of cells.14 The FMDV genome is about 8,400 nt long 

and encodes a large polyprotein from within a single open 

reading frame of about 7,000 nt (see Figure1). The uncapped 

viral RNA includes a very long (ca 1,300 nt) 5′-untranslated 

region (UTR) and a short 3′-UTR (ca 90 nt) plus a poly(A) 

tail.15 The 5′-UTR contains a poly(C) tract, multiple pseudo-

knots (of unknown function), a cis-acting replication element 

(cre) (also referred to as a 3B-uridylylation site [bus])16 and an 

internal ribosome entry site (IRES) which directs the initia-

tion of protein synthesis on the viral RNA.15 The full-length 

“polyprotein” is never observed since processing, largely by 

virus-encoded proteases, commences during the process of 

protein synthesis. In total 15 different mature polypeptides are 

made plus a variety of different precursor proteins some of 

which have functional significance with unique functions.

The initiation of protein synthesis on the FMDV RNA, 

directed by the IRES, occurs at two different sites separated, 

usually, by 84 nt.15 This results in the production of two dif-

ferent forms of the Leader (L) protein, the first component 

of the polyprotein, and these are termed Lab and Lb. It has 

been shown that these two forms of the L protein share the 

known major functions of this papain-like cysteine protease.17 

They can both cleave the L/P1 junction, in trans and probably 

in cis as well. They can also both induce the cleavage of the 

eukaryotic initiation factor 4G (eIF4G) which is an essential 

component of the cap-binding complex. Cleavage of eIF4G 

results in separation of the N-terminal domain (that binds 

to the cap-binding protein eIF4E) away from the rest of the 

complex. The modified complex is still able to support cap-

independent translation initiation on the FMDV IRES15 and 

so FMDV protein synthesis can occur but does not support 

cap-dependent protein synthesis, hence translation of cellular 

messenger (m)RNAs is efficiently blocked.

The FMDV SP precursor, P1-2A, has a  myristoylation 

signal sequence (GXXXS/T)18 at its N-terminus and hence 

the N-terminal glycine residue (generated through the action 

of the L protease as indicated above) becomes modified by 

the addition of a myristate group through the action of the 

cellular modification system (see Figure 3). The presence 

of the myristate group appears important for the  assembly/

or stability of the capsid of FMDV and certain other 

picornaviruses.19,20 The break at the junction between P1-2A 

and 2B is unusual; it requires the 2A peptide but this short, 

highly conserved, peptide lacks protease motifs and only 

functions to interrupt the formation of the polypeptide chain 

during polypeptide synthesis. It has been suggested that it 

induces “ribosomal skipping” at the NPG/P junction so that 

no peptide bond is actually made.21 Processing of P1-2A pre-

cursor to produce VP0, VP3, VP1, and 2A is achieved by the 

3C protease (3Cpro), and the final cleavage of VP0 to VP2 and 

VP4 occurs in the context of the assembled capsid. It used to 
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The 3A protein may serve to deliver the VPg peptides to 

the RNA replication machinery.32 Variants of FMDV with 

deletions within the 3A protein have been identified; these 

are associated with more restricted host range of the virus 

including attenuation in cattle.34 As indicated above, the 3C 

protein is a chymotrypsin-like protease and is responsible for 

most of the proteolytic cleavages within the virus encoded 

polyprotein (see Figure 2). In contrast to poliovirus (PV) 

and other enteroviruses, which require 3CD as the active 

protease for P1 processing, the FMDV 3Cpro is sufficient for 

all processing events within P1-2A. The 3Cpro also has an 

RNA-binding region32 and this may underlie its involvement 

(either alone or as part of the 3CD precursor) in the process 

of VPg uridylylation.32 The 3D protein is the RNA dependent 

RNA polymerase (3Dpol) and hence is critical for the process 

of RNA replication; this involves the production of a nega-

tive strand RNA template and then many more copies of the 

positive strand genome.

Diagnostics for FMDV; current  
tests and detection methods
Suspected cases of FMD are identified based on clinical 

signs, including fever, excessive salivation, presence of 

vesicles on the oral mucosa, on the nose plus the inter-digital 

spaces and coronary bands on the feet. However, the clini-

cal signs can be confused with other diseases (eg, vesicular 

stomatitis and swine vesicular disease) and thus a laboratory 

based diagnosis is required. The first priority is the specific 

detection of FMDV but it is also important to identify the 

serotype of virus involved in outbreaks (if vaccination is 

considered) and sequence analysis can be used to identify 

the potential source of the introduced virus.

Detection of FMDV RNA
The currently favored technique for the detection of FMDV 

is the use of reverse transcription quantitative polymerase 

chain reaction (RT-qPCR) assays; these are rapid, sensitive, 

and specific. Currently, two different RT-qPCR assays which 

recognize highly conserved parts of the genome are in com-

mon use, one targeting part of the IRES within the 5′ UTR35 

and the second targeting a region within the 3Dpol coding 

sequence.36 These assays can be performed using robotic 

extraction of RNA and thus can achieve relatively high 

throughput, especially using one-step RT-qPCR procedures.37 

Thus the assays are suitable for the diagnosis of a primary 

index case and for use in an ongoing outbreak. However, these 

assays are not designed to discriminate between serotypes 

of FMDV and each of the assays can fail to detect particular 

..KAKGAGQSS...

GAGQSS.....KAK

Cellular N-myristoyl transferase + myristate

myr-GAGQSS...

L VP0

VP0L

Figure 3 Myristoylation of FMDV capsid proteins by host cell systems.
Notes: Cleavage of the L/VP0 junction by the Leader (L) protease (indicated by 
arrow) generates an N-terminal glycine (G) residue on VP0 within the consensus 
motif (GXXXS/T) that is recognized by the cellular myristoylation system. Addition 
of the myristate (myr) moiety (indicated by ◄) is required for the formation of 
empty capsid particles and virions.
Abbreviation: FMDV, foot-and-mouth disease virus.

be thought that this cleavage was dependent on packaging of 

the genome, however, it has become apparent that it occurs 

within assembled “empty” capsid particles (lacking the RNA 

genome) too22–24 but the mechanism is not known.

The P2 and P3 regions of the polyprotein include the 

NSPs. The functions of the P2 region (which is processed by 

3Cpro to produce 2B and 2C) are not very well understood. It 

has been shown that 2BC or 2B together with 2C can inhibit 

trafficking of proteins to the cell surface,25,26 this may have 

an adverse effect on the presentation of viral proteins to the 

host immune system, thus protecting the virus from immune 

defenses. The 2C protein is also implicated in viral RNA 

replication since it is the site of action of guanidine which 

can block this process. Mutants of the virus which become 

resistant to this inhibitor have mutations within the 2C cod-

ing region.27–29 Recent studies have shown that the FMDV 

2C protein is a member of the AAA+ family of proteins and 

forms a hexameric structure.30

The P3 region is processed to 3A, three different forms 

of 3B (3B
1
, 3B

2
 and 3B

3
 which are often called VPgs [viral 

protein-genome linked]), 3C and 3D. The 3B peptides 

(23 or 24 amino acids each) are modified in an unusual 

reaction involving the covalent linkage of uridyl residues to 

a conserved tyrosine (Y) residue within each VPg.31,32 The 

VPgpUpU then acts as a primer for the initiation of RNA 

synthesis and thus all picornavirus RNAs have a 5′-terminus 

comprising VPg-UU…. FMDV is unique in having three 

 different versions of the VPg peptide and each is functional.33 
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FMDVs due to the presence of nucleotide mismatches within 

the region targeted by the primers and probes. Thus, no single 

stand-alone assay is capable of detecting FMDV with 100% 

certainty. There has been recent work to develop RT-qPCR 

assays for serotyping of FMDV,38 however due to the diversity 

of the viruses in different areas of the world it is likely that 

such assays will have to be tailored to specific global regions. 

Alternative nucleic acid amplification methods (eg, LAMP 

[loop-mediated isothermal amplification]) have also been 

described for the detection of FMDV RNA39 which may be 

applicable in certain settings.

Virus isolation
Until the advent of RT-qPCR assays, the preferred technique 

for the detection of FMDV was the use of virus isolation fol-

lowed by its characterization. Primary cell cultures  (especially 

bovine thyroid cells) or certain cell lines (eg, BHK or IBRS2) 

are suitable for isolation of FMDV. Up to 4 days (using two 

passages of up to 2 days) may be required to demonstrate the 

presence of virus, especially when the initial levels of virus 

are low, and therefore it also takes 4 days to be confident that 

no virus is present.

FMDV antigen detection
Roeder and Le Blanc-Smith40 established assays for the 

detection of FMDV antigen using high titer anti-FMDV 

antisera raised in rabbits and guinea pigs for antigen cap-

ture and detection, respectively. The assays are serotype 

specific and quick, thus they are frequently used for the 

diagnosis of FMD and for virus typing. However, the 

enzyme-linked immunosorbent assay (ELISA) is not 

very sensitive and only gives positive results with about 

70%–80% of epithelial suspensions that contain the virus. 

Thus the virus may have to be propagated in cell culture 

(as described above) and subsequently tested in the ELISA 

to detect the virus and ascertain the serotype; clearly this 

significantly lengthens the procedure. Variants of this 

procedure also exist; for example, monoclonal antibody 

(Mab)-based ELISAs have been developed for detection 

and typing of FMDV41 and a sandwich ELISA using recom-

binant integrin αvβ6 (a cellular receptor for FMDV) for 

virus capture and serotype-specific monoclonal antibodies 

as detecting reagents was reported.42 These integrin/Mab 

ELISAs recognized FMDVs of broad antigenic diversity 

from all seven serotypes.

A Mab-based chromatographic strip test for FMDV 

detection was developed43 as a pen-side test. This system 

can be as sensitive as the conventional antigen ELISA for 

the detection of FMDV in epithelial suspensions and may 

represent a convenient tool during outbreaks.

Serology
The virus neutralization test is considered as the “gold stan-

dard” for detection of antibodies to the SPs of FMDV and is 

a prescribed test for import/export certification of animals/

animal products.44 However, since primary cells and cell 

lines with variable degrees of sensitivities are used, these 

assays are prone to more variability than other serological 

tests. Furthermore, the virus neutralization test is slower 

and requires biocontainment facilities in contrast to other 

serological tests (ie, ELISAs) which use inactivated viruses 

as antigens.

Detection of antibodies against either the SPs or NSPs 

can be determined using ELISAs. As indicated above, vac-

cines consisting of purified preparations of chemically inac-

tivated virus particles induce antibodies almost exclusively 

against the SPs of the virus (at least after a small number of 

 vaccinations) but infection will induce antibodies against the 

NSPs as well. Thus it can be possible to discriminate between 

infected and vaccinated animals based on the detection of 

antibodies to NSPs. A species independent and serotype 

independent blocking ELISA using baculovirus expressed 

FMDV NSPs as antigen is commercially available and widely 

used. Serotype specific ELISAs for the detection of antibod-

ies to the SPs are also described44 and some are commercially 

available or as kits from reference laboratories.

It is clearly important that the design of new vaccines 

against FMDV should consider the importance of being able 

to differentiate between infected and vaccinated animals.

Current vaccines against FMDV  
and novel approaches that could 
elicit a better immunity
As indicated above, current vaccines rely on the production of 

huge quantities of infectious FMDV, generally in large scale 

tissue culture systems; the virus is then chemically inactivated 

and purified (optimally) prior to use, in combination with 

an adjuvant, as a vaccine. Properties of these vaccines have 

been reviewed previously.2,45  Vaccination plays an important 

role in the control of FMD when outbreaks are frequent. For 

example, in Europe during the 1960s and 70s the disease was 

very successfully controlled using a combination of efficient 

veterinary services, movement controls, and vaccination. 

When the disease incidence became very low, vaccination 

was ceased and is no longer permitted in Europe except 

under emergency situations. It is clearly easiest to show the 
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absence of infection if there are no antibodies to FMDV 

within the animal population, however this does leave the 

animals fully susceptible if the virus is introduced. Certain 

countries in Europe (eg, the UK) have never vaccinated 

against FMD but the huge expense and loss of animals dur-

ing the 2001 outbreak in the UK has led to consideration of 

new strategies.

Vaccination has been used in both the Netherlands and 

Japan in the face of outbreaks but in both cases all the vac-

cinated animals were then killed. “Vaccination to live”, as an 

emergency strategy, has not been employed within Europe 

but it is foreseen that if new outbreaks occur in Europe there 

will be a high public/consumer demand for a non-killing 

strategy. In areas of the world where the disease is endemic, 

and no culling of infected animals occurs, vaccination is fre-

quently used around reported outbreaks to reduce the spread 

of the disease. Shortcomings of the current FMD vaccine 

have been outlined above and thus there is significant interest 

in the development of improved vaccines against the disease 

which can assist in the reduction of the disease globally.

The most effective vaccines used to control other viral 

diseases (eg, against smallpox, rinderpest, and PV) have all 

been “live” attenuated viruses but it has not been possible 

to derive safe, effective infectious FMDV strains as vaccine 

candidates. This may partly reflect the diversity of the hosts 

for FMDV and the ability of the virus to change (and thus 

potentially revert to virulence). “Live” attenuated vaccines 

have the property of producing viral antigens within the 

infected cells and short peptides derived from such antigens 

are then displayed on the surface of infected cells in associa-

tion with host MHC proteins, this is particularly important 

for the induction of cytotoxic T-cells. However, the role of 

cytotoxic T-cells in generating protection against FMDV 

is not clear46 but induction of other T-cell responses may 

affect the duration of immunity.47 Inactivated vaccines are 

recognized by antigen presenting cells and principally induce 

a B-cell response but this response is positively influenced by 

the presence of CD4(+) T-cells, since depletion of these cells 

reduces the level and nature of the antibody response.48

In the early days of genetic engineering it was very 

popular to try and express the FMDV VP1 in a variety of 

different forms, in numerous systems, to try and produce a 

non-infectious “subunit” vaccine. However, none of these 

proved very effective in inducing a good protective immune 

response in natural host animals. The unprocessed capsid 

precursor protein P1-2A does share some characteristics with 

the virus in terms of its antigenicity and it is able to bind to the 

integrin receptor (αvβ6) that is used by the intact virus.23,49,50 

However, this precursor protein is not very immunogenic and 

fails to generate a protective immune response.46,49

Hence, more recently, the focus has been on expressing 

“empty capsid particles” (see Figure 2) since these non-infec-

tious particles (lacking the viral genome) have the same anti-

genic and immunogenic properties as whole viruses19,51 while 

having the advantage of not constituting a risk of spreading 

from the production plant. However, achieving the efficient 

expression of FMDV empty capsid particles has not proved 

completely straightforward (see below). In addition, unmodi-

fied empty capsids may suffer from some of the same issues 

as vaccines based on inactivated virus but should at least 

remove the need for virus growth under high containment 

facilities. The production of empty capsid particles does not 

need NSPs (other than 3Cpro) and thus removes the possibility 

of these products inducing an anti-NSP immune response. 

This should improve the ability to discriminate infected from 

vaccinated animals. Furthermore, a good expression system 

may offer the possibility of modifying the FMDV capsid in 

a manner which is not possible when FMD virus viability is 

also required for the production system.

Primary requirements for FMDV  
“empty capsid” production
In principle, the production of FMDV “empty capsids” should 

require the co-expression of the P1-2A capsid precursor 

with the 3Cpro, this can produce the processed products VP0, 

VP3, and VP1 which can self-assemble into particles (Figure 

2). Indeed this was successfully demonstrated many years 

ago.19 The system used at that time involved the use of two 

separate recombinant vaccinia viruses, one expressing the T7 

RNA polymerase and another which contained the FMDV 

P1-2A+3Cpro cDNA cassette downstream of a T7 promoter. 

When cells were co-infected with both recombinant viruses 

then production of FMDV “empty capsids” could be observed. 

However, this system is not suitable for use in animals as 

it is not possible to ensure co-infection of cells by the two 

separate viruses. Constitutive expression of the P1-2A+3Cpro 

from a single recombinant vaccinia virus was not achieved 

since it was not possible to isolate such a recombinant virus; 

it appeared that the expression of this cassette had a negative 

effect on the growth of the virus vector.52

Secondary requirements  
for “empty capsid” production
Picornavirus RNA is produced and functions within the cyto-

plasm of cells, hence the nucleus is a “foreign” environment 

for it. The vaccinia virus expression system described above 
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is very suitable for the expression of picornavirus cDNA 

since all the transcription (to make RNA) occurs within the 

cytoplasm of the cell whereas the host cell  transcription 

machinery is present within the nuclei and host cell RNA 

transcripts are extensively modified (eg, by splicing, capping, 

and polyadenylation) before the mature mRNAs are trans-

ported from the nucleus to the cytoplasm so that translation 

can occur. This means that picornavirus cDNA, and especially 

RNA transcripts derived from it, may be inappropriately 

recognized (eg, for splicing) within the nuclei of cells. It is 

worth noting that the initial system,53 using cloned cDNA, to 

rescue PV used cDNA under the control of an SV40 promoter 

(which is only functional within the nucleus). The infectiv-

ity of this cDNA was very low, a few plaque forming units 

(pfu) were generated per µg of plasmid whereas systems that 

produce RNA transcripts from picornavirus cDNA in vitro 

can achieve .105 pfu/µg of RNA.54 Thus, the transcription 

of picornavirus cDNA from within the nucleus appears to 

be very inefficient at achieving the cytoplasmic expression 

of intact picornavirus RNA and hence expression systems 

which avoid this may be preferable.

The amino terminus of the P1-2A capsid precursor is 

myristoylated (see above). This post-translational modifica-

tion is achieved by a cellular system which is present within 

mammalian and insect cells but lacking in Escherichia coli 

(unless specific steps are taken to achieve this).50 The assem-

bly of the processed FMDV capsid proteins into pentamers 

(12S) and subsequently into empty capsid particles (75-80S) 

is inhibited if myristoylation is blocked;19,50 similar obser-

vations have been reported previously for PV.20,55,56 Thus it 

seems necessary to employ expression systems which permit 

this modification.

Successful expression of “empty capsid” 
components
As indicated above, the expression of P1-2A+3Cpro cas-

settes has been achieved in cells using vaccinia virus based 

vectors19,51,52 and has been optimized by achieving reduced 

levels of the 3Cpro expression relative to the P1-2A.23,24,51,57 

These systems generate empty capsid particles which can 

be detected by sucrose gradient analysis and by electron 

 microscopy. The structure of these particles has been deter-

mined by 3D-reconstructions from electron micrographs23 

and by X-ray crystallography.51 Furthermore, despite some 

of the potential problems described above, it has been pos-

sible to express P1-2A+3Cpro cDNA cassettes using recom-

binant adenoviruses that direct transcription from within the 

nucleus.58,59 No direct evidence for assembly of the expressed 

proteins into empty capsid particles has been reported using 

this system. However, it has been possible to achieve protec-

tion against FMDV challenge in animals using these vectors60 

but high levels of the adenovirus are required which may 

suggest that the expression of the FMDV proteins is relatively 

low, albeit detectable.46 It is noteworthy that adenovirus vec-

tors expressing serotype A (A24) cassettes have proved to be 

more successful than serotype O (O1 Campos) but the basis 

for this difference is not defined.61

The baculovirus expression system also uses transcrip-

tion from within the nucleus but most baculovirus transcripts 

are not spliced and it therefore appears that the potential for 

adverse modification of transcripts derived from FMDV cDNA 

within recombinant baculoviruses is more limited.62 However 

the baculovirus expression system has proved sensitive to the 

activity of the FMDV 3Cpro. Thus it has required introduction of 

both a frameshift signal (to reduce 3Cpro expression level) and 

introduction of an amino acid substitution, to reduce protease 

activity,63 to allow satisfactory expression and processing of 

the P1-2A precursor into empty capsids.51,64 This system has 

permitted the expression of a stabilized form of FMDV empty 

capsids (with a single amino acid change in VP2) which display 

tolerance to heat or low pH treatment and are able to induce 

protection against FMDV challenge.51 A feature of the bacu-

lovirus system is that the virus can be grown in insect larvae 

and generate large amounts of protein.65–67

A recent report has described the co-expression of VP0, 

VP3, and VP1 as His-tagged SUMO (small ubiquitin-like 

modifier) fusion proteins in E. coli.68 After removal of 

the His-SUMO moieties using SUMO protease, apparent 

assembly of the capsid proteins into virus-like particles (ca 

25 nm diameter), that sedimented at 75S, was observed. 

These were able to induce protection in guinea pigs, pigs, 

and cattle against FMDV challenge. Precise details of the 

protein sequences present within these particles are lacking 

and the issue of VP0 myristoylation was not addressed. It is 

therefore unclear how these particles have assembled.

The role of NSPs, as well as other 
elements, for the development  
of more effective vaccines
Recent studies61,69 have demonstrated that inclusion of the 

FMDV 2B coding sequence into the P1-2A+3C cassettes 

expressed from recombinant adenovirus vectors have improved 

the properties of both serotype A and O cDNA  cassettes. 

The analyses indicated that improved T-cell responses were 

obtained but there was no difference in the level of neutral-

izing antibodies generated. A rather different strategy for 
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enhancing the immune response to FMDV vaccines has been 

described70 in which RNA transcripts, including the IRES, were 

delivered in conjunction with commercial inactivated FMDV 

vaccine and found to enhance the anti-FMDV antibody titers 

in mice. It was suggested that the RNA transcripts acted like 

an adjuvant. The RNA transcripts were found to be potent 

type-I interferon inducers and this may underlie this effect. 

It is well known that interferon has a strong inhibitory effect 

on FMDV replication and studies have shown that expression 

of interferon, from adenovirus vectors, can effectively block 

FMDV replication in swine.71

The precise deletion of the Lb coding region to make a so-

called “leaderless virus” (see Figure 4) from FMDV results in 

a virus which is still viable72–74 but attenuated in cattle.75 The 

loss of Lb results in a decreased ability of the virus to shut 

off host cell protein synthesis; this will allow the synthesis 

of interferon.76 Such viruses can grow well in BHK cells73,74 

and may represent useful tools for the development of safer 

vaccine strains for conventional cell culture production since 

any escape only releases viruses that are non-pathogenic and 

cannot revert to virulence.

There has been significant interest recently in generating 

marked FMDVs which may permit improved DIVA and/

or offer alternative routes for virus purification. Sequences 

for the HA and FLAG epitope tags were inserted into the 

VP1 within the virus capsid without adverse effect on virus 

growth.77 In an alternative strategy, it has been shown that the 

cleavage of the VP1/2A junction (by 3Cpro) is not required 

for virus viability24,78 and the modification of the cleavage 

site can result in the formation of “self-tagged” virus par-

ticles which contain the VP1-2A fusion protein. Thus no 

“foreign” sequences are added to the genome but the pres-

ence of the 2A attached to the VP1 can be readily detected 

(using anti-2A antibodies). The epitope-tagged viruses and 

“self-tagged” viruses offer the possibility of  alternative 

(serotype  independent) purification systems for virus  antigen. 

They should also induce a distinct immune response com-

pared to the native virus which could be used as part of a 

DIVA system. However, use of such “tags” does not allow the 

identification of animals which have been vaccinated and then 

infected. It is important to note that current FMDV vaccines 

do not prevent infection but only disease; indeed vaccinated 

animals can become “carriers” (see above).

Alterations in the immune  
response that are caused  
by infection with FMDV
The major focus of the immune response against FMDV is 

production of antibodies that can recognize and neutralize 

the virus. Such antibodies are generated within 4–7 days of 

infection and their detection within serum is coincident with 

the cessation of viremia within infected animals. Antibodies 

to NSPs are also generated but these tend to appear a little 

later.79 The role of T-cell responses in immunity against 

FMDV is rather poorly understood. Infection of cattle does 

not appear to have an adverse effect on the ability of these 

animals to mount an immune response against FMDV,80 

however a transient loss of circulating T-cells has been 

reported in swine.81

As mentioned above, in about 50% of infected cattle, 

after the acute phase of infection which normally resolves 

within about 14 days, a long-term “carrier” state can occur 

for up to 2–3 years. It occurs despite the presence of neu-

tralizing antibodies in the serum. Since FMDV does not 

AAA(n)
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VP2∆L VP3 VP1

VP4Leaderless virus

Wild type virus

Precise deletion of Lb coding region

2B 2C 3A
2A

3C 3D
3B1–3

2B 2C 3A
2A

3C 3D
3B1–3
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Lb VP2
VP4

VP0
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Figure 4 Production of attenuated “Leaderless” FMD viruses.
Notes: Precise deletion of the Lb coding region from the FMDV polyprotein coding region generates a “Leaderless” form of the virus which has been shown to be attenuated 
in cattle. Such viruses can still replicate efficiently in cell culture and may allow the safer production of FMDV vaccines.
Abbreviations: FMDV, foot-and-mouth disease virus; FMD, foot-and-mouth disease.
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survive for very long at 37°C,82 it seems that the virus must 

be replicating within the carrier animal in a site which is 

protected from the host immune response. The site of such 

replication is not precisely established; both the dorsal 

soft palate and germinal centers of lymph nodes have been 

identified as sites of long-term virus maintenance83,84 but 

biopsy samples taken from both of these sites from “car-

rier” cattle that were excreting virus failed to detect the viral 

RNA in most of these tissue samples.85 It seems unlikely 

that cells can tolerate a long-term infection by FMDV, the 

loss of host cell protein synthesis which occurs at very low 

levels of FMDV L protein expression, should be lethal. This 

either suggests that infection of fresh cells is occurring on a 

regular basis, albeit probably involving a small number of 

cells at any one time, or that a mutant form of the L protein 

is expressed by the viruses within carrier animals but there 

is no evidence for this.

The germinal centers of lymph nodes from cattle and buf-

falo that have been infected by FMDV can contain viral RNA 

and protein for extended periods of time but this is believed to 

be in a non-replicating form84,86 and it is not known whether 

such virus can infect other cells. As indicated above, although 

it is generally believed that pigs do not become carriers, 

evidence has been presented that the FMDV RNA and SPs 

can also be detected in porcine lymph nodes for some weeks 

after infection87 but no infectious virus could be recovered 

from these tisssues.11,88

Immune response elements  
that might contribute  
to protection against acute  
and persistent infections
FMDV replication is highly sensitive to type I interferon and, 

as described above, the virus has a mechanism for stopping 

virus-infected cells from producing interferon (and other host 

proteins) by blocking host cell protein synthesis. However, 

within FMDV infected cattle it has been possible to detect 

interferon within the serum of acutely infected cattle.89,90 It 

therefore seemed possible that the interferon detected did 

not originate from FMDV infected cells but potentially from 

other cells that detected some of the viral components. It has 

been reported that bovine plasmacytoid dendritic cells are 

the major source of type I interferon in response to FMDV 

infection.90 However, these cells are believed to interact with 

viruses within immune-complexes and it is not clear whether 

these would be present during the acute phase of infection 

when the interferon response is observed,89 some days before 

anti-FMDV antibodies are detectable in serum.

One process that may contribute towards the ability of 

FMDV-infected cells to be maintained within the host is the 

ability of the 2BC protein (or 2B and 2C together) to block 

the transport of proteins to the cell surface.25,26 This can have 

the effect of blocking virus derived peptides from being 

transported and then displayed on the cell surface and hence 

will render the infected cell apparently “normal” and hence 

not subject to immune surveillance.

Changes in cellular signaling 
pathways triggered by FMDV
When FMDV infects cells it can initiate a variety of intracel-

lular responses. These could be triggered by interaction of the 

virus with the cell-surface exposed integrin receptor, through 

the introduction into cells of highly structured RNA, through 

the shut-off of host cell protein synthesis (which can induce 

apoptosis), and by direct effects of viral proteins on host 

cell systems. The virus can combat such host cell responses 

directly, eg, by inducing cleavage of specific proteins involved 

in such events, or more indirectly (but in a general fashion) by 

blocking host cell macromolecular biosynthesis (transcription 

and translation). Some effects of virus infection appear to be 

a combination of such processes. Interferon induction can be 

blocked by inhibiting host cell transcription and translation 

but there are also reports that the FMDV L protease induces 

cleavage of NF-κB91 while the 3Cpro cleaves the NF-κB essen-

tial modulator (NEMO), a bridging adaptor protein required 

for the activation of both NF-κB and interferon-regulatory 

factor signaling pathways.92

Conclusion
Current vaccines developed to control FMD have significant 

shortcomings. However, when used appropriately and in 

conjunction with other control measures, they can be very 

helpful in controlling and even eradicating the disease on a 

regional basis (as achieved in Europe). However, it is likely 

that improved FMDV vaccines will be required to achieve 

the global eradication of the disease. Different situations 

may require different solutions but it seems likely that the 

production of non-infectious, specifically engineered, “empty 

capsid particles” using a suitable expression system will form 

the basis of such improved vaccines.

Acknowledgment
We thank Louise Lohse (DTU Vet) for helpful comments 

on the manuscript.

Disclosure
The authors declare no conflict of interest.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Virus Adaptation and Treatment 2015:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

21

Candidate vaccines to improve control of FMD

References
 1. Knight-Jones TJ, Rushton J. The economic impacts of foot and mouth 

disease – what are they, how big are they and where do they occur? 
Prev Vet Med. 2013;112(3–4):161–173.

 2. Doel TR. FMD vaccines. Virus Res. 2003;91(1):81–99.
 3. Parida S, Fleming L, Oh Y, et al. Emergency vaccination of 

sheep against foot-and-mouth disease: significance and detection 
of subsequent sub-clinical infection. Vaccine. 2008;26(27–28): 
3469–3479.

 4. Jamal SM, Shah SI, Ali Q, et al. Proper quality control of formulated 
foot-and-mouth disease vaccines in countries with prophylactic 
vaccination is necessary. Transbound Emerg Dis. 2014;61(6): 
483–489.

 5. Alexandersen S, Zhang Z, Donaldson AI, Garland AJ. The pathogenesis 
and diagnosis of foot-and-mouth disease. J Comp Pathol. 2003;129(1): 
1–36.

 6. Alexandersen S, Oleksiewicz MB, Donaldson AI. The early pathogen-
esis of foot-and-mouth disease in pigs infected by contact: a quantitative 
time-course study using TaqMan RT-PCR. J Gen Virol. 2001;82(Pt 4): 
747–755.

 7. Pacheco JM, Arzt J, Rodriguez LL. Early events in the pathogenesis 
of foot-and-mouth disease in cattle after controlled aerosol exposure. 
Vet J. 2010;183(1):46–53.

 8. Salt JS. The carrier state in foot and mouth disease – an immunological 
review. Br Vet J. 1993;149(3):207–223.

 9. Condy JB, Hedger RS, Hamblin C, Barnett IT. The duration of the 
foot-and-mouth disease virus carrier state in African buffalo (i) in 
the individual animal and (ii) in a free-living herd. Comp Immunol 
 Microbiol Infect Dis. 1985;8(3–4):259–265.

 10. Moonen P, Schrijver R. Carriers of foot-and-mouth disease virus:  
a review. Vet Q. 2000;22(4):193–197.

 11. Stenfeldt C, Pacheco JM, Smoliga GR, et al. Detection of foot-and-
mouth disease virus RNA and capsid protein in lymphoid tissues 
of convalescent pigs does not indicate existence of a carrier state.  
Transbound Emerg Dis. Epub June 18, 2014.

 12. Tenzin, Dekker A, Vernooij H, Bouma A, Stegeman A. Rate of foot-
and-mouth disease virus transmission by carriers quantified from 
experimental data. Risk Anal. 2008;28(2):303–309.

 13. van Roermund HJ, Eble PL, de Jong MC, Dekker A. No between-
pen transmission of foot-and-mouth disease virus in vaccinated pigs. 
 Vaccine. 2010;28(28):4452–4461.

 14. Belsham GJ, Bostock CJ. Studies on the infectivity of foot-and-mouth 
disease virus RNA using microinjection. J Gen Virol. 1988;69(Pt 2): 
265–274.

 15. Belsham GJ. Translation and replication of FMDV RNA. Curr Top 
Micro Immunol. 2005;288:43–70.

 16. Tiley L, King AMQ, Belsham GJ. The foot-and-mouth disease virus 
cis-acting replication element (cre) can be complemented in trans within 
infected cells. J Virol. 2003;77(3):2243–2246.

 17. Medina M, Domingo E, Brangwyn JK, Belsham GJ. The two species of 
the foot-and-mouth disease virus leader protein, expressed individually, 
exhibit the same activities. Virology. 1993;194(1):355–359.

 18. Towler, DA, Gordon JI, Adams SP, Glaser L. The biology and enzy-
mology of eukaryotic protein acylation. Annu Rev Biochem. 1988;57: 
69–99.

 19. Abrams C, King AM, Belsham GJ. Assembly of foot-and-mouth disease 
virus empty capsids synthesized by a vaccinia virus expression system. 
J Gen Virol. 1995;76(Pt 12):3089–3098.

 20. Chow M, Newman JF, Filman D, Hogle JM, Rowlands DJ, Brown F.  
Myristylation of picornavirus capsid protein VP4 and its structural 
significance. Nature. 1987;327(6122):482–486.

 21. Donnelly ML, Luke G, Mehrotra A, et al. Analysis of the aphthovirus 
2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic 
reaction, but a novel translational effect: a putative ribosomal ‘skip’.  
J Gen Virol. 2001;82(Pt 5):1013–1025.

 22. Curry S, Abrams CC, Fry E, et al. Viral RNA modulates the acid sen-
sitivity of foot-and-mouth disease virus capsids. J Virol 1995;69(1): 
430–438.

 23. Gullberg M, Muszynski B, Organtini LJ, et al. Assembly and 
characterization of foot-and-mouth disease virus empty capsid par-
ticles expressed within mammalian cells. J Gen Virol. 2013;94(Pt 8): 
1769–1779.

 24. Gullberg M, Polacek C, Bøtner A, Belsham GJ. Processing of the 
VP1/2A junction is not necessary for production of foot-and-mouth 
disease virus empty capsids and infectious viruses: characterization of 
“self-tagged” particles. J Virol. 2013;87(21):11591–11603.

 25. Moffat K, Howell G, Knox C, et al. Effects of foot-and-mouth disease 
virus non-structural proteins on the structure and function of the early 
secretory pathway: 2BC but not 3A blocks ER to Golgi transport.  
J Virol. 2005;79(7):4382–4395.

 26. Moffat K, Knox, C, Howell G, et al. Inhibition of the secretory pathway 
by the foot-and-mouth disease virus 2BC protein is reproduced by co-
expression of 2B and 2C and the site of inhibition is determined by the 
subcellular location of 2C. J Virol. 2007;81(3):1129–1139.

 27. Saunders K, King AM. Guanidine-resistant mutants of aphthovirus 
induce the synthesis of an altered nonstructural polypeptide, P34.  
J Virol. 1982;42(2):389–394.

 28. Pariente N, Airaksinen A, Domingo E. Mutagenesis versus inhibition 
in the efficiency of extinction of foot-and-mouth disease virus. J Virol. 
2003;77(12):7131–7138.

 29. Belsham GJ, Normann P. Dynamics of picornavirus RNA replication 
within infected cells. J Gen Virol. 2008;89(Pt 2):485–493.

 30. Sweeney TR, Cisnetto V, Bose D, et al. Foot-and-mouth disease virus 
2C is a hexameric AAA+ protein with a coordinated ATP hydrolysis 
mechanism. J Biol Chem. 2010;285(32):24347–24359.

 31. Nayak A, Goodfellow IG, Belsham GJ. Factors required for the 
uridylylation of the foot-and-mouth disease virus 3B1, 3B2 and 3B3 
peptides by the RNA dependent RNA polymerase (3Dpol) in vitro.  
J Virol. 2005;79(12):7698–7706.

 32. Nayak A, Goodfellow IG, Woolaway KE, Birtley J, Curry S, 
Belsham GJ. Role of RNA structure and the RNA binding activity of 
the foot-and-mouth disease virus 3C protein in VPg uridylylation and 
virus replication. J Virol. 2006;80(19):9865–9875.

 33. King AM, Sangar DV, Harris TJ, Brown F. Heterogeneity of the 
genome-linked protein of foot-and-mouth disease virus. J Virol. 
1980;34(3):627–634.

 34. Pacheco JM, Gladue DP, Holinka LG, et al. A partial deletion in non-
structural protein 3A can attenuate foot-and-mouth disease virus in 
cattle. Virology. 2013;446(1–2):260–267.

 35. Reid SM, Ferris NP, Hutchings GH, et al. Detection of all seven 
serotypes of foot-and-mouth disease virus by real-time, fluorogenic 
reverse transcription polymerase chain reaction assay. J Virol Methods. 
2002;105(1):67–80.

 36. Callahan JD, Brown F, Osorio FA, et al. Use of a portable real-time 
reverse transcriptase-polymerase chain reaction assay for rapid detec-
tion of foot-and-mouth disease virus. Am Vet Med Assoc. 2002;220(11): 
1636–1642.

 37. Shaw AE, Reid SM, Ebert K, Hutchings GH, Ferris NP, King DP. 
Implementation of a one-step real-time RT-PCR protocol for diagnosis 
of foot-and-mouth disease. J Virol Methods. 2007;143(1):81–85.

 38. Reid SM, Mioulet V, Knowles NJ, Shirazi N, Belsham GJ, King DP. 
Development of tailored serotype-specific real-time RT-PCR assays 
for the detection and differentiation of serotype O, A and Asia-1 foot-
and-mouth disease virus lineages circulating in the Middle East. J Virol 
Methods. 2014;207:146–153.

 39. Dukes JP, King DP, Alexandersen S. Novel reverse transcription loop-
mediated isothermal amplification for rapid detection of foot-and-mouth 
disease virus. Arch Virol. 2006;151(6):1093–1106.

 40. Roeder PL, Le Blanc-Smith PM. Detection and typing of foot-and-
mouth disease virus by enzyme linked immunosorbent assay: a sensi-
tive, rapid and reliable technique for primary diagnosis. Res Vet Sci. 
1987;43(2):225–232.

 41. Morioka K, Fukai K, Yoshida K, et al. Foot-and-mouth disease virus 
antigen detection enzyme-linked immunosorbent assay using multise-
rotype-reactive monoclonal antibodies. J Clin Microbiol. 2009;47(11): 
3663–3668.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Virus Adaptation and Treatment 2015:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

22

Belsham and Bøtner

 42. Ferris N, Grazioli S, Hutchings G, Brocchi E. Validation of a recombi-
nant integrin αvβ6/monoclonal antibody based antigen ELISA for the 
diagnosis of foot-and-mouth disease. J Virol Methods. 2011;175(2): 
253–260.

 43. Reid SM, Ferris NP, Brüning A, Hutchings GH, Kowalska Z, 
Akerblom L. Development of a rapid chromatographic strip test for 
the pen-side detection of foot-and-mouth disease virus antigen. J Virol 
Methods. 2001;96(2):189–202.

 44. OIE. Foot-and-mouth disease. In: Manual of Diagnostic Tests and 
 Vaccines for Terrestrial Animals (Mammals, Birds and Bees). Vol 1, 
7th ed. World Organization for Animal Health (OIE), Paris, France; 
2012.

 45. Rodriguez LL, Grubman MJ. Foot-and-mouth disease virus vaccines. 
Vaccine. 2009;27 Suppl 4:D90–D94.

 46. Patch JR, Pedersen LE, Toka FN, et al. Induction of foot-and-mouth 
disease virus-specific cytotoxic T cell killing by vaccination. Clin 
 Vaccine Immunol. 2011;18(2):280–288.

 47. Golde WT, de Los Santos T, Robinson L, et al. Evidence of activation 
and suppression during the early immune response to foot-and-mouth 
disease virus. Transbound Emerg Dis. 2011;58(4):283–290.

 48. Carr BV, Lefevre EA, Windsor MA, et al. CD4+ T-cell responses 
to foot-and-mouth disease virus in vaccinated cattle. J Gen Virol. 
2013;94(Pt 1):97–107.

 49. Sáiz JC, Cairó J, Medina M, et al. Unprocessed foot-and-mouth disease 
virus capsid precursor displays discontinuous epitopes involved in viral 
neutralization. J Virol. 1994;68(7):4557–4564.

 50. Goodwin S, Tuthill TJ, Arias A, Killington RA, Rowlands DJ. 
 Foot-and-mouth disease virus assembly: processing of recombinant 
capsid precursor by exogenous protease induces self-assembly of 
pentamers in vitro in a myristoylation-dependent manner. J Virol. 
2009;83(21):11275–11282.

 51. Porta C, Kotecha A, Burman A, et al. Rational engineering of recombi-
nant picornavirus capsids to produce safe, protective vaccine antigen. 
PLoS Pathog. 2013;9(3):e1003255.

 52. Belsham GJ, Brangwyn JK, Ryan MD, Abrams CC, King AM. 
 Intracellular expression and processing of foot-and-mouth disease 
virus capsid precursors using vaccinia virus vectors: Influence of the 
L protease. Virology. 1990;176(2):524–530.

 53. Racaniello V, Baltimore D. Cloned poliovirus complementary DNA is 
infectious in mammalian cells. Science. 1981;214(4523):916–919.

 54. van der Werf S, Bradley J, Wimmer E, Studier FW, Dunn JJ. Synthesis 
of infectious poliovirus RNA by purified T7 RNA polymerase. Proc 
Natl Acad Sci U S A. 1986;83(8):2330–2334.

 55. Marc D, Girard M, van der Werf S. A Gly1 to Ala substitution in 
poliovirus capsid protein VP0 blocks its myristoylation and prevents 
viral assembly. J Gen Virol. 1991;72(Pt 5):1151–1157.

 56. Ansardi DC, Porter DC, Morrow CD. Myristylation of poliovirus capsid 
precursor P1 is required for assembly of subviral particles. J Virol. 
1992;66(7):4556–4563.

 57. Polacek C, Gullberg M, Jiong L, Belsham GJ. Low levels of foot-and-
mouth disease virus 3Cpro expression are required to achieve optimal 
capsid protein expression and processing in mammalian cells. J Gen 
Virol. 2013;94(Pt 6):1249–1258.

 58. Mayr GA, Chinsangaram J, Grubman MJ. Development of replication-
defective adenovirus serotype 5 containing the capsid and 3C protease 
coding regions of foot-and-mouth disease virus as a vaccine candidate. 
Virology. 1999;263(2):496–506.

 59. Mayr GA, O’Donnell V, Chinsangaram J, Mason PW, Grubman MJ. 
Immune responses and protection against foot-and-mouth disease 
virus (FMDV) challenge in swine vaccinated with adenovirus-FMDV 
constructs. Vaccine. 2001;19(15–16):2152–2162.

 60. Moraes MP, Mayr GA, Mason PW, Grubman MJ. Early protection 
against homologous challenge after a single dose of replication-
defective human adenovirus type 5 expressing capsid proteins 
of foot-and-mouth disease virus (FMDV) strain A24. Vaccine. 
2002;20(11–12):1631–1639.

 61. Moraes MP, Segundo FD, Dias CC, Pena L, Grubman MJ. Increased 
efficacy of an adenovirus-vectored foot-and-mouth disease capsid 
subunit vaccine expressing nonstructural protein 2B is associated with 
a specific T cell response. Vaccine. 2011;29(51):9431–9440.

 62. van Oers MM. Opportunities and challenges for the baculovirus expres-
sion system. J Invertebr Pathol. 2011;107 Suppl:S3–S15.

 63. Zunszain PA, Knox SR, Sweeney TR, et al. Insights into cleavage 
specificity from the crystal structure of foot-and-mouth disease virus 3C 
protease complexed with a peptide substrate. J Mol Biol. 2010;395(2): 
375–389.

 64. Porta C, Xu X, Loureiro S, et al. Efficient production of foot-and-mouth 
disease virus empty capsids in insect cells following down regulation 
of 3C protease activity. J Virol Methods. 2013;187(2):406–412.

 65. Li Z, Yi Y, Yin X, Zhang Z, Liu J. Expression of foot-and-mouth disease 
virus capsid proteins in silkworm-baculovirus expression system and 
its utilization as a subunit vaccine. PLoS One. 2008;3(5):e2273.

 66. Cao Y, Lu Z, Sun J, et al. Synthesis of empty capsid-like particles of Asia 
I foot-and-mouth disease virus in insect cells and their immunogenicity 
in guinea pigs. Vet Microbiol. 2009;137(1–2):10–17.

 67. Li Z, Yin X, Yi Y, et al. FMD subunit vaccine produced using a silkworm-
baculovirus expression system: protective efficacy against two type 
Asia1 isolates in cattle. Vet Microbiol. 2011;149(1–2):99–103.

 68. Guo HC, Sun SQ, Jin Y, et al. Foot-and-mouth disease virus-like particles 
produced by a SUMO fusion protein system in Escherichia coli induce 
potent protective immune responses in guinea pigs, swine and cattle. 
Vet Res. 2013;44:48.

 69. Pena L, Moraes MP, Koster M, et al. Delivery of a foot-and-mouth 
disease virus empty capsid subunit antigen with nonstructural protein 
2B improves protection of swine. Vaccine. 2008;26(45):5689–5699.

 70. Borrego B, Rodríguez-Pulido M, Mateos F, de la Losa N, Sobrino F, 
Sáiz M. Delivery of synthetic RNA can enhance the immunogenicity 
of vaccines against foot-and-mouth disease virus (FMDV) in mice. 
Vaccine. 2013;31(40):4375–4381.

 71. Chinsangaram J, Moraes MP, Koster M, Grubman MJ. Novel viral 
disease control strategy: adenovirus expressing alpha interferon rap-
idly protects swine from foot-and-mouth disease. J Virol. 2003;77(2): 
1621–1625.

 72. Piccone ME, Rieder E, Mason PW, Grubman MJ. The foot-and-mouth 
disease virus leader proteinase gene is not required for viral replication. 
J Virol. 1995;69(9):5376–5382.

 73. Uddowla S, Hollister J, Pacheco JM, Rodriguez LL, Rieder E.  
A safe foot-and-mouth disease vaccine platform with two negative 
markers for differentiating infected from vaccinated animals. J Virol. 
2012;86(21):11675–11685.

 74. Belsham GJ. Influence of the Leader protein coding region of foot-and-
mouth disease virus on virus replication. J Gen Virol. 2013;94(Pt 7): 
1486–1495.

 75. Brown CC, Piccone ME, Mason PW, McKenna TS, Grubman MJ. 
Pathogenesis of wild-type and leaderless foot-and-mouth disease virus 
in cattle. J Virol. 1996;70(8):5638–5641.

 76. de Los Santos T, de Avila Botton S, Weiblen R, Grubman MJ. The 
leader proteinase of foot-and-mouth disease virus inhibits the induction 
of beta interferon mRNA and blocks the host innate immune response. 
J Virol. 2006;80(4):1906–1914.

 77. Seago J, Jackson T, Doel C, et al. Characterization of epitope-
tagged foot-and-mouth disease virus. J Gen Virol. 2012;93(Pt 11): 
2371–2381.

 78. Gullberg M, Polacek C, Belsham GJ. Sequence adaptations affect-
ing cleavage of the VP1/2A junction by the 3C protease in foot-
and-mouth disease virus infected cells. J Gen Virol. 2014;95(Pt 
11):2402–2410.

 79. Sørensen KJ, Madsen KG, Madsen ES, Salt JS, Nqindi J, Mackay DK. 
Differentiation of infection from vaccination in foot-and-mouth disease 
by the detection of antibodies to the non-structural proteins 3D, 3AB 
and 3ABC in ELISA using antigens expressed in baculovirus. Arch 
Virol. 1998;143(8):1461–1476.

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


Virus Adaptation and Treatment

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/virus-adaptation-and-treatment-journal

Virus Adaptation and Treatment is an international, peer-reviewed open 
access journal focusing on the study of virology, viral adaptation and 
the development and use of antiviral drugs and vaccines to achieve 
improved outcomes in infection control and treatment. The journal 
welcomes original research, basic science, clinical & epidemiological 

studies, reviews & evaluations, expert opinion and commentary, case 
reports and extended reports. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

Virus Adaptation and Treatment 2015:7 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

23

Candidate vaccines to improve control of FMD

 80. Windsor MA, Carr BV, Bankowski B, et al. Cattle remain immunocom-
petent during the acute phase of foot-and-mouth disease virus infection. 
Vet Res. 2011;42:108.

 81. Bautista EM, Ferman GS, Golde WT. Induction of lymphopenia and 
inhibition of T cell function during acute infection of swine with 
foot and mouth disease virus (FMDV). Vet Immunol Immunopathol. 
2003;92(1–2):61–73.

 82. Bøtner A, Belsham GJ. Virus survival in slurry; analysis of the stability 
of foot-and-mouth disease, classical swine fever, bovine viral diarrhoea 
and swine influenza viruses. Vet Microbiol. 2012;157(1–2):41–49.

 83. Zhang Z, Alexandersen S. Quantitative analysis of foot-and-mouth 
disease virus RNA loads in bovine tissues: implications for the site of 
viral persistence. J Gen Virol. 2004;85(Pt 9):2567–2575.

 84. Juleff N, Windsor M, Reid E, et al. Foot-and-mouth disease virus persists 
in the light zone of germinal centres. PLoS One. 2008;3(10):e3434.

 85. Stenfeldt C, Belsham GJ. Detection of foot-and-mouth disease virus 
RNA in pharyngeal epithelium biopsy samples obtained from infected 
cattle: investigation of possible sites of virus replication and persistence. 
Vet Microbiol. 2012;154(3–4):230–239.

 86. Juleff ND, Maree FF, Waters R, Bengis RG, Charleston B. The impor-
tance of FMDV localisation in lymphoid tissue. Vet Immunol Immu-
nopathol. 2012;148(1–2):145–148.

 87. Rodríguez-Calvo T, Díaz-San Segundo F, Sanz-Ramos M, Sevilla N. A 
replication analysis of foot-and-mouth disease virus in swine lymphoid 
tissue might indicate a putative carrier stage in pigs. Vet Res. 2011; 
42:22.

 88. Mohamed F, Swafford S, Petrowski H, et al. Foot-and-mouth disease 
in feral swine: susceptibility and transmission. Transbound Emerg Dis. 
2011;58(4):358–371.

 89. Stenfeldt C, Heegaard PMH, Stockmarr A, Tjørnehøj K, Belsham GJ. 
Analysis of the acute phase responses of Serum Amyloid A, Haptoglobin 
and Type 1 Interferon in cattle experimentally infected with foot-and-
mouth disease virus serotype O. Vet Res. 2011;42:66.

 90. Reid E, Juleff N, Gubbins S, Prentice H, Seago J, Charleston B. Bovine 
plasmacytoid dendritic cells are the major source of type I interferon in 
response to foot-and-mouth disease virus in vitro and in vivo. J Virol. 
2011;85(9):4297–308.

 91. de Los Santos T, Diaz-San Segundo F, Grubman MJ. Degradation of 
nuclear factor kappa B during foot-and-mouth disease virus infection. 
J Virol. 2007;81(23):12803–12815.

 92. Wang D, Fang L, Li K, et al. Foot-and-mouth disease virus 3C pro-
tease cleaves NEMO to impair innate immune signaling. J Virol. 
2012;86(17):9311–9322.

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com/virus-adaptation-and-treatment-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


