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Abstract: Human olfactory mucosa mesenchymal-like stem cells (hOM-MSCs) secrete para-

crine factors that may exert a protective effect on the cerebral ischemia. This study was done 

to determine the hypoxic and ischemic effects on the mRNA and protein expression level of 

paracrine factors by hOM-MSCs. The hOM-MSCs were cultured with 5% or 20% serum and 

under either normoxic (21% O
2
) or hypoxic (3% O

2
) conditions. Expression levels of mRNA 

and protein for vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-

derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and 

matrix metalloproteinase-2 (MMP-2) were determined by quantitative reverse transcription 

polymerase chain reaction and Western blot, respectively. Hypoxia reduced gene expression for 

VEGF (5% serum), GDNF, BDNF (5% serum) and NGF (5% serum) and increased it for BDNF 

(20% serum), MMP-2 (5% serum) and NGF (20% serum). Ischemia lowered gene expression 

for VEGF (hypoxia), GDNF, BDNF (hypoxia), MMP-2 (normoxia) and NGF (hypoxia) and 

increased it for VEGF (normoxia), BDNF (normoxia), MMP-2 (hypoxia) and NGF (normoxia).

The protein level of these factors was almost in line with the gene level. These data demonstrate 

that serum and oxygen levels have a significant effect on the gene and protein expression levels 

of paracrine factors by hOM-MSCs, which will affect how hOM-MSCs interact in vivo during 

cerebral ischemia.

Keywords: human olfactory mucosa mesenchymal-like stem cells, paracrine factors, hypoxia, 

ischemia, cerebral ischemia

Introduction
Work done in numerous laboratories has demonstrated that stem cell administration 

is able to reduce the loss of function in the brain after cerebral ischemia. There is a 

study that has demonstrated that intranasal treatment with mesenchymal stem cells 

(MSCs) reduces lesion volume and improves motor and cognitive behaviors in the 

neonatal hypoxic-ischemic mouse model.1 These MSCs secrete the paracrine factors, 

vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain derived 

neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and 

matrix metalloproteinase-2 (MMP-2), which play an important role in the biological 

functions of MSCs.2–7 It is important to understand the way in which the synthesis 

and secretion of these factors are controlled. This will help us better utilize MSCs in 

clinical situations.

The oxygen concentration present in the cultured medium has a significant effect 

on the behavior of MSCs. The atmospheric oxygen concentration routinely used for 
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culture is significantly higher than that of physiological con-

ditions in the body. A oxygen concentration is 10%–13% in 

arterial blood.8 A 1%–7% oxygen concentration is found in 

bone marrow microenvironment.9–11 There is only 3%–14% 

oxygen in brain.12 Hypoxia13 can affect the secretion of 

paracrine factors,14 alter gene expression of MSCs15,16 and 

enhance proliferation of MSCs.17–21

The amount of serum present in the culture media also 

affects stem cell behavior. When MSCs are cultured in 10% 

serum, some factors may not be present. Moreover, the 

ischemic conditions present after cerebral ischemia include 

both hypoxia and serum deprivation.22 Reduction in serum 

levels reduces cell proliferation and upregulates genes for 

angiogenic factors and endothelial differentiation in MSCs.23 

Serum deprivation changes the expression of endothelial 

markers and the secretion of paracrine factors in MSCs.24,25

As a population of the MSCs, olfactory mucosa mesen-

chymal-like stem cells (OM-MSCs) may work effectively 

in the treatment of cerebral ischemia. Olfactory mucosa is 

a self-renewal tissue, containing olfactory ensheathing cells 

(OECs) and OM-MSCs. OECs are able to promote axonal 

outgrowth by secreting growth factors such as NGF.26,27 

OM-MSCs can proliferate rapidly in vitro. Furthermore, 

OM-MSCs have the multiple potential to differentiate into 

cartilage, bone, smooth muscle and nerve cells.28 Our labo-

ratory has analyzed the proteins that the human olfactory 

mucosa mesenchymal-like stem cells (hOM-MSCs) secrete. 

These hOM-MSCs also secrete the paracrine factors VEGF, 

NGF, BDNF, GDNF and MMP-2. Hence, the purpose of the 

present study was to mimic the conditions of cerebral isch-

emia by lowering oxygen and serum concentrations during 

culture. In order to determine the effects of these conditions 

on the gene and protein expression levels of hOM-MSCs, we 

cultured hOM-MSCs in 5% or 20% serum in either normoxic 

(21% O
2
) or hypoxic (3% O

2
) environment.

Methods
hOM-MSCs culture
The olfactory mucosa was obtained from the volunteers 

whose olfactory mucosa tissue was normal. Each volunteer 

signed a written informed consent to participate in this 

study. The ethics committee of Hunan Normal University 

approved this study. hOM-MSCs were isolated from olfactory 

mucosa and cultured in Dulbecco’s Modified Eagle Medium 

(DMEM)/F-12 medium with 20% fetal bovine serum (FBS) 

supplement as described previously.29 hOM-MSCs from 

passage 5 were cultured at 37°C in a flask in 2 mL/flask 

DMEM/F-12 with 5% or 20% FBS supplement. Normoxic 

cells were cultured for 48 h under normal atmospheric oxygen 

(21%) plus 5% CO
2
. Hypoxic cells were cultured for 48 h in 

a reduced oxygen atmosphere (3% O
2
, 5% CO

2
).

Phenotypic characterization of  
hOM-MSCs
Flow cytometric analysis of hOM-MSCs was performed as 

previously described.29 Briefly, cell suspensions were washed 

twice with phosphate-buffered saline (PBS) containing 0.1% 

FBS. One hundred thousand cells were incubated with CD34-

fluorescein isothiocyanate (FITC), CD45-FITC, CD73–FITC 

and CD90-FITC (Abcam, Cambridge, UK) at 4°C for 30 min 

and then washed twice with PBS containing 0.1% FBS. As a 

negative control, the cells were incubated with the corresponding 

irrelevant immunoglobulin G (IgG)-FITC antibodies. The cells 

were analyzed by cytometric analysis using an EPICS XL flow 

cytometer (Becton- Dickinson, San Diego, CA, USA) with 

EXPO32 software (Beckman Coulter Inc., Brea, CA, USA).

Western blot analysis
After 48 h of culture, the cells were washed once with ice 

precooled PBS. Then media were removed and centrifuged 

at 3,000 rpm for 2 min. After supernatant removal, 50 mL 

of radioimmunoprecipitation assay lysis buffer was added 

and cleavaged on the ice for 30 min. The homogenate was 

centrifuged at 12,000 rpm for 15 min at 4°C. The supernatant 

was separated into a 0.5 mL centrifuge tube and stored at -20°C. 

In brief, lysates containing 50 μg proteins were subjected 

to gel electrophoresis. Proteins were then transferred to 

polyvinylidene difluoride membranes. The blots were blocked 

in 4% bovine serum albumin in Tris-buffered saline with Tween 

20 solution for 30 min at room temperature and then incubated 

at 4°C overnight with the primary antibody: VEGF (1:1,000; 

Cell Signaling Technology, Inc., Danvers, MA, USA), NGF 

(1:1,000; Proteintech, Rosemont, IL, USA), GDNF (1:1,000; 

Santa Cruz Biotechnology, Inc., Dallas, TX, USA), BDNF 

(1:1,000; Santa Cruz Biotechnology, Inc.), MMP-2 (1:1,000; 

Abcam) and β-actin (1:4,000; Proteintech). After incubation 

with secondary antibodies at room temperature for 1 h, the 

blot was visualized using ChemiDoc XRS imaging system 

(Bio-Rad Laboratories Inc., Hercules, CA, USA).

mRNA quantification using quantitative 
reverse transcription polymerase chain 
reaction
Total RNA was isolated after 48 h of culture using TRIzol 

reagent (Thermo Fisher Scientific, Waltham, MA, USA) 

according to the manufacturer’s instructions. RNA was 

treated with DNAse I and then quantified and assessed for 

quality by measuring absorbance at 260 and 280 nm. Reverse 
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transcription was performed using PrimeScript RT Master Mix 

(Genstar, Beijing, People’s Republic of China). The cDNA 

amplification was performed by real-time polymerase chain 

reaction (PCR; LightCycler 480; Hoffman-La Roche Ltd., 

Roche, Switzerland) using GoTaq qPCR Master Mix (Promega 

Corporation, Fitchburg, WI, USA). Reverse transcription PCR 

primers were designed by Beacon 7.0 Primer Express software 

(Thermo Fisher Scientific). Specific primers of VEGF, NGF, 

GDNF, BDNF and MMP-2 in this study are listed in Table 1. 

Real-time PCR reactions were incubated at 95°C for 10 min 

and then for 40 cycles at 95°C for 5 s followed by at 60°C for 

30 s. The measurements were performed in triplicate.

Statistical analysis
Mean and standard deviation were calculated for each treatment 

group, and significance was determined using Student’s t-test. 

IBM SPSS Statistics 18.0 (IBM Corporation, Armonk, 

NY, USA) was used for data analysis. A P-value <0.05 was 

considered significant. The following biologically relevant 

comparisons were made: 1) normoxic cells grown in 5% and 

20% serum; 2) hypoxic cells grown in 5% and 20% serum; 

3) normoxic cells with hypoxic cells grown in 5% serum; and 

4) hypoxic cells with normoxic cells grown in 20% serum.

Results
Surface antigen characteristics of  
hOM-MSCs
As shown in Figure 1, we analyzed a panel of five membrane 

markers by flow cytometry. A characteristic feature of hOM-

MSCs is a CD34-,CD45-, CD73+, CD90+ and CD105+ 

cell-surface phenotype.30 The CD analysis was performed 

in parallel on cells that were either adherent or clustered in 

spheres before being trypsinized.

Paracrine factor secretion
The secretion of paracrine factors by hOM-MSCs into the 

culture media was measured using Western blot (Figure 2). 

Serum reduction from 20% to 5% and changing from a 

 normoxic to a hypoxic environment had remarkable effects 

on the protein levels detected in the media.

VEGF levels were significantly elevated (P<0.05) in 

media from cells cultured in 5% serum supplement compared 

to those in 20% supplement in normoxic conditions, but in 

hypoxic conditions, the results were the opposite. Hypoxia 

had some effects on the secretion of VEGF.

As seen with VEGF, hypoxic conditions significantly 

increased (P<0.05) NGF levels in media compared to those in 

normoxic conditions in 20% serum supplement. Moreover, 

5% serum supplement significantly reduced (P<0.05) NGF 

levels in the hypoxic environment.

GDNF levels were obviously reduced (P<0.05) in 5% 

serum compared to 20% serum in normoxic conditions, an 

effect not seen in hypoxic conditions. Also, hypoxia sig-

nificantly reduced (P<0.05) GDNF secretion in 20% serum 

supplement.

In addition, serum reduction to 5% resulted in a meaning-

ful elevation (P<0.05) of BDNF levels compared to 20% in 

normoxic conditions. Hypoxic conditions increased (P<0.05) 

BDNF levels in media compared to those in normoxic condi-

tions in 20% serum supplement.

Changes in MMP-2 secretion followed the general trends 

as seen for GDNF. MMP-2 levels were obviously reduced 

(P<0.05) in 5% serum compared to 20% serum in normoxic 

conditions. However, MMP-2 levels were unaffected by 

oxygen levels in 20% serum supplement.

mRNA levels for paracrine factors
The normalized relative expression of mRNA in hOM-MSCs 

for the various paracrine factors was determined using 

quantitative reverse transcription PCR (Figure 3). Changes 

in mRNA paralleled changes in secretion even though a few 

differences were observed.

Serum reduction to 5% caused a significant upgrade in 

the relative expression of VEGF mRNA compared to 20% in 

normoxic conditions (P<0.05), but in hypoxic conditions, the 

results were the opposite. Hypoxia resulted in an elevation 

Table 1 PCR primers

Paracrine factors Forward Reverse

VEGF 5′-TGCCTGCGACTGTGGCTCTG-3′ 5′-CCCGTGTCCTCGCTGTCCTTGT-3′
NGF 5′-CCACCGCCACAGACATCA-3′ 5′-GCTCTTCTCACAGCCTTCC-3′
GDNF 5′-CAGATAAACAAATGGCAGTG-3′ 5′-ATAGCCCAGACCCAAGTC-3′
BDNF 5′-CATTGGCTGACACTTTCG-3′ 5′-CTGAGCATCACCCTGGAC-3′
MMP-2 5′-GGATGATGCCTTTGCTCG-3′ 5′-ATCGGCGTTCCCATACTT-3′
β-actin 5′-CATCCTGCGTCTGGACCTGG-3′ 5′-TAATGTCACGCACGATTTCC-3′
Abbreviations: PCR, polymerase chain reaction; VEGF, vascular endothelial growth factor; NGF, nerve growth factor; GDNF, glial cell line-derived neurotrophic factor; 
BDNF, brain-derived neurotrophic factor; MMP-2, matrix metalloproteinase-2.
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of VEGF expression levels in 20% serum (P<0.05) but not 

in 5% serum. This is similar to the response observed with 

VEGF secretion into the surrounding media.

Serum reduction to 5% significantly increased (P<0.05) 

the relative expression of NGF mRNA compared to 20% 

serum supplement in normoxic conditions, but in hypoxic 

conditions, serum reduction to 5% decreased (P<0.05) the 

relative expression of NGF mRNA. Hypoxia reduced (P<0.05) 

the relative expression of NGF mRNA in 5% serum supple-

ment, and in 20% serum supplement, the results were the 

opposite. This was similar to what was observed in NGF secre-

tion except for the expression levels in normoxic conditions.

The relative expression of GDNF mRNA was sig-

nificantly reduced (P<0.05) in 5% serum compared to 20% 

serum in normoxic conditions. No effect was seen in hypoxic 

conditions. Hypoxia obviously reduced mRNA expression in 

20% (P<0.05) supplements. This effect was similar to what 

was observed for GDNF secretion.

For BDNF mRNA, reducing the serum from 20% to 

5% led to a meaningful elevation (P<0.05) of the  relative 

 expression of BNDF mRNA in normoxic conditions. 

 However, in hypoxic conditions, the relative expression of 

BDNF mRNA was reduced (P<0.05) in 5% serum compared 

to 20% serum. Hypoxic conditions increased (P<0.05) 

the relative expression of BDNF mRNA compared to that 

in normoxic conditions in 20% serum supplement. These 

effects were similar to secretion of BDNF into the culture 

media where hypoxia had no effect on BDNF secretion in 

5% serum supplement.

Reducing the serum from 20% to 5% significantly 

decreased (P<0.05) the relative expression of MMP-2 

mRNA in normoxic conditions. Nevertheless, reducing 

the oxygen concentration had no significant effect in 20% 

serum supplement. Hypoxia increased (P<0.05) the relative 

expression of MMP-2 mRNA in 5% serum supplement. 

These findings were similar to the results of the protein 

secretion experiments.

Discussion
The research distinctly demonstrates that alteration in oxygen 

concentrations and serum levels brings about significant 

changes in the mRNA expression and secretion of paracrine 
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Figure 1 Flow cytometric analysis of the expression of surface antigens on human OM-MSCs.
Notes: (A) Isotype control, (B–C) there is no expression of CD34 and CD45. The cells were immunolabeled with the FITC conjugated monoclonal antibody specific for 
the indicated surface antigen, (D–F) there is notable expression of CD73, CD90 and CD105. % all indicates the percentage of target cells in the defined counting cells, % hist 
indicates the percentage of target cells in the actually measured cells.
Abbreviations: OM-MSCs, olfactory mucosa mesenchymal-like stem cells; FITC, fluorescein isothiocyanate; CV, coefficient of variation
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Figure 2 Secretion of paracrine factors under different oxygen and serum conditions.
Notes: Representative gel electrophoresis images (A) and analyzed data of the protein levels of (B) VEGF, (C) NGF, (D) GDNF, (E) BDNF and (F) MMP-2. Bar graph from 
densitometry analysis shows the ratio. Data reported as mean ± SEM. 5% and 20% refer to the amount of serum supplement present in the media. n=3 independent assays. 
(a) P<0.05 versus 20%. (b) P<0.05 versus normoxia.
Abbreviations: VEGF, vascular endothelial growth factor; NGF, nerve growth factor; GDNF, glial cell line-derived neurotrophic factor; BDNF, brain-derived neurotrophic 
factor; MMP-2, matrix metalloproteinase-2; SEM, standard error of the mean; FBS, fetal bovine serum.
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Figure 3 Normalized relative expression of (A) VEGF, (B) NGF, (C) GDNF, (D) BDNF and (E) MMP-2 under different oxygen and serum conditions.
Notes: Data reported as mean ± SEM. 5% and 20% refer to the amount of serum supplement present in the media. n=3 independent assays. (a) P<0.05 versus 20%. (b) P<0.05 
versus normoxia.
Abbreviations: VEGF, vascular endothelial growth factor; NGF, nerve growth factor; GDNF, glial cell line-derived neurotrophic factor; BDNF, brain-derived neurotrophic 
factor; MMP-2, matrix metalloproteinase-2; SEM, standard error of the mean; FBS, fetal bovine serum.
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factors by hOM-MSCs. It is the first time (to the best of our 

knowledge) that these two parameters have been studied 

simultaneously. The data suggest that the low serum and 

oxygen conditions present during the ischemia found after 

brain ischemia may have significant effects on the secretory 

function of MSCs and the role they play in preventing the loss 

of cerebral function after cerebral infarction.31 The particular 

changes observed depend on the specific paracrine factors 

that were studied. Changes in mRNA often were in line with 

changes in secretion, and there were few exceptions.

Our research indicated that in 20% serum supplement, 

hypoxia significantly reduced the gene expression for 

GDNF but significantly increased the expression of genes 

for VEGF, NGF and BDNF, while MMP-2 expression was 

unaffected. Secretions of VEGF, NGF and BDNF were all 

significantly elevated by hypoxia in 20% serum supplement, 

while GDNF was decreased and MMP-2 was unaffected. 

Changes in secretions of VEGF, NGF, BDNF, GDNF and 

MMP-2 paralleled changes in expression of genes for VEGF, 

NGF, BDNF, GDNF and MMP-2 in 20% serum supplement. 

Meanwhile, the gene expression for NGF was reduced by 

hypoxia in 5% serum supplement, while the secretion of 

NGF was unaffected. The reasons for the differences between 

mRNA expression and secretion for NGF are not immediately 

apparent but may be due to differences in the control of gene 

expression versus control of translational and posttranslational 

events that lead from mRNA production to secretion. Other 

investigators have demonstrated an increase in VEGF gene 

expression and secretion by MSCs in hypoxia.14,15 Our results 

generally did demonstrate an increase in VEGF after hypoxia 

in 20% serum supplement, while the results are the opposite 

in 5% serum supplement. The serum levels may influence 

the gene expression for VEGF, so the secretion of VEGF in 

hypoxia was different between the 20% serum supplement 

and the 5% serum supplement. In addition, hypoxia increased 

gene expression for trophic/growth factors in MSCs, 

including BDNF, GDNF and VEGF and its receptor FIK-1; 

erythropoietin (EPO) and its receptor EPOR; stromal derived 

factor-1 and its CXC chemokine receptor 4; placental growth 

factor; heparin-binding epidermal growth factor; MMP-9, and 

basic fibroblast growth factor (bFGF).14,15,32 Hypoxia caused 

an increase in the secretion of transforming growth factor-β2; 

insulin-like growth factor (IGF) binding proteins 2, 3, 4 and 

6; IGF-II and interleukin-7,33,34 and reduced the secretion of 

stromal cell derived factor-1, macrophage colony stimulating 

factor, interleukin-1 receptor antagonist, RANTES, 

chemokine (C-X-C motif) ligand 1, lactate dehydrogenase and 

chemokine (C-X-C motif) ligand 10 by MSCs.16,35 In short, 

hypoxia changes the paracrine secretions of MSCs, which 

would have implications for the role they play in reducing the 

loss of function in the brain after cerebral ischemia.

Exposure to a hypoxic environment leads to obvious 

changes in cellular physiology. Hypoxia-inducible factor 

(HIF)-1 is the key mediator of the physiological responses 

associated with reduction in tissue oxygen tension (hypoxia) 

and plays an important role in VEGF transcriptional 

activation.36,37 Transcription factor HIF-1 consists of two 

subunits: HIF-1α, the hypoxia-induced component, and 

HIF-1β, which is expressed constitutively. HIF-1α is rapidly 

degraded in normoxic cells. However, under conditions of low 

oxygen tension, HIF-1α stabilizes due to hypoxia-prevented 

degradation. One of the reasons is that the stabilization of 

HIF-1α in an oxygen-dependent manner is between 0.5% 

and 5%, which may be due to the release of reactive oxygen 

species by the mitochondria that prevents its degradation.38,39 

This enhances the concentration of constitutively expressed 

HIF-1α, which forms an active transcription factor with 

HIF-1β to promote cell survival.40 A variety of genes are 

affected by this cascade. HIF-1α mRNA expression was 

upgraded in MSCs after 48 h of culture in hypoxic conditions.15 

On the basis of this, it is not surprising that we found that 

hypoxia alters the gene expression and secretion of paracrine 

factors, and HIF-1α may play an important role in the  

response.

Our study demonstrated that reducing the serum concen-

tration from 20% to 5% caused an increase in the mRNA 

expression for MMP-2 (hypoxia only) but a significant 

decrease in the expression for VEGF (hypoxia only), NGF 

(hypoxia only), GDNF (normoxia only) and BDNF (hypoxia 

only). Secretion of MMP-2 was elevated by serum reduction 

in hypoxia, while VEGF, NGF and BDNF were significantly 

reduced in hypoxia. Serum deprivation could promote the 

apoptosis of MSCs; the effect was stronger when hypoxia 

and serum deprivation were combined together. Moreover, 

the effect of serum deprivation on apoptosis was stronger 

than that of hypoxia.41 Alterations in gene expression and 

secretion after serum reduction are not surprising because 

the media contain less protein and fewer signaling growth 

factors. Some studies have proved that serum reduction 

or deprivation causes an increased expression and secre-

tion of VEGF by MSCs.24,42 But in our research, only in 

normoxic conditions, serum reduction caused an increase 

in the mRNA expression for VEGF. It is unclear why low-

ering serum reduced expression and secretion of VEGF in 

hypoxic conditions. The reason may be that the effect of 

promoting the apoptosis of hOM-MSCs is stronger when 
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hypoxia and serum deprivation are combined together. 

When hOM-MSCs were in a state of apoptosis, the expres-

sion and secretion of VEGF were decreased. Reports from 

other laboratories have indicated that reducing serum 

from 20% to 2% in MSC cultures resulted in a significant 

decline in proliferation42 and an increased expression of 

genes for bFGF and angiogenin-1.23 Serum deprivation 

led to epigenetic changes in MSCs, which upregulated the 

expression of the IGF-1 and leptin.43 Hence, the results 

have significant therapeutic implications for the paracrine 

actions of hOM-MSCs, because cerebral ischemia results 

in a serum-deprived state in the brain.

Hypoxia and serum reduction also have an effect on gene 

expression associated with differentiation in MSCs. Hypoxic 

MSCs maintained significantly higher colony-forming unit 

capabilities and expressed higher levels of stem cell genes 

than MSCs cultured at normoxic conditions.44 Hypoxia 

promoted osteogenic differentiation of MSCs, and the mech-

anism of hypoxia-mediated signaling in osteogenic differen-

tiation in MSCs is direct regulation of RUNX2 by TWIST.45 

Besides, hypoxia and transforming growth factor-beta drive 

differentiation of MSCs toward a phenotype consistent with 

that of the nucleus pulposus.46 More importantly, MSCs 

expanded under hypoxic conditions exhibited telomerase 

activity with maintained telomere length, normal karyotyp-

ing and intact genetic integrity and did not form tumors.47 

These results supported that hypoxic culture as a method for 

efficiently expanding MSCs is safe. MSCs maintained most 

of their stemness and angiogenic genes’ expression in 10% 

FBS, but this increased significantly in 2% FBS. Reduction 

in the serum levels to 2% caused an increased expression of 

endogenic genes such as platelet endothelial cell adhesion 

molecule-1, vascular endothelial cadherin and VEGF recep-

tor-2.23 Serum reduction resulted in an increased endothelial 

differentiation by MSCs.24 Reduction in the serum levels 

to 2% caused a lower growth rate in MSCs.23 The MSCs’ 

death rates were not affected by the shift to 48h hypoxia, 

but increased with FBS starvation, demonstrating that serum 

deprivation is the stronger factor. Long-term serum depri-

vation combined with hypoxia led to the complete death of 

MSCs.48 Hence, the hypoxic/low serum conditions present 

after cerebral ischemia provide conditions that maintain the 

pluripotency of MSCs while also promoting their ability to 

differentiate. The changes in the differentiation state might 

also affect the expression and secretion of paracrine factors 

in MSCs.

The paracrine factors secreted by MSCs have significant 

biologic activities that are believed to play a role in their 

brain effects.49,50 MSCs are a potent source of VEGF, 

which is a promoter and regulator of angiogenesis.2,51 

Neurons exposed to hypoxic conditions exhibited neuronal 

apoptosis, but the combined hypoxia-inducible VEGF and 

MSCs treatment indicated a significant increase in VEGF 

expression and decreased neuronal apoptosis.52 Also, grafting 

MSCs after a spinal cord compression injury revealed a 

significant increase in NGF expression in the injured tissue, 

which promoted the recovery of spinal cord function.3 

Another study indicated that grafted MSCs survived after 

transplantation into intact spinal cord and produced cells that 

expressed NGF and BDNF.53 GDNF has been shown to be 

capable of protecting motor neurons in amyotrophic lateral 

sclerosis, and MSCs improved the motor tests performed, 

which coincided with a higher GDNF immunoreactivity 

in the grafted spinal cord.5 MMP-2 is a gelatinase that 

is secreted by MSCs.54 Hypoxia preconditioning-treated 

MSCs showed a higher level of expression of MMP-2 

and exhibited enhanced homing efficiency to the infarct 

cortex.55 All these data suggest that MSCs could be a 

potential source of cells to promote cell survival and axonal 

growth of host tissue. Differential regulation of these 

paracrine factors by hypoxic and low serum conditions as 

demonstrated in this research may play an important role 

in the beneficial effects of MSCs injection during cerebral  

ischemia.
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