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Abstract: Scientific attention has focused recently on the link between Guillain–Barrè syndrome 

(GBS) and Zika virus (ZIKV). Two related questions emerged: 1) what triggered the violent 

2014 outbreak of a virus, which, first identified in 1947, had caused only a limited number of 

documented cases of human infection until 2007 and 2) which molecular mechanism(s) relate 

ZIKV active infection to GBS, an autoimmune inflammatory polyradiculoneuropathy. Capital-

izing on the increased interest on ZIKV and hypothesizing the involvement of autoimmune 

mechanisms, we searched for minimal epitopic determinants shared between ZIKV and other 

GBS-related pathogens – namely, Epstein–Barr virus, human cytomegalovirus, influenza virus, 

Campylobacter jejuni, and Mycoplasma pneumoniae, among others – and human proteins that, 

when altered, have been associated with myelin disorders and axonopathies. We report a consid-

erable peptide matching that links GBS-related pathogens to human proteins related to myelin 

disorders and axonopathies. Crucially, the shared pentapeptides repeatedly occur throughout 

numerous epitopes validated as immunopositive by a conspicuous scientific literature. The 

data support a scenario where multiple different infections over time and resulting multiple 

cross-reactions may contribute to the pathogenesis of GBS. In practice, previous infection(s) 

might create immunologic memory able to trigger uncontrolled hyperimmunogenicity during 

a successive pathogen exposure. ZIKV pandemic appears to be an exemplar model for a proof-

of-concept of such multiple cross-reactivity mechanism.

Keywords: peptide sharing, GBS-related human proteins, GBS-related pathogens, multiple 

cross-reactivity, hyperimmunogenicity

Introduction
Zika virus (ZIKV) was discovered in 1947 and has been considered of little or no clini-

cal importance until 2007, a date that marks the beginning of epidemics that caught 

scientific and clinical communities by surprise.1 Among the pathologic sequelae, 

Guillain–Barré syndrome (GBS) in adults appears to be a clinical outcome following 

ZIKV active infection.2–7 

How this neuropathologic outcome and the flavivirus infection may be linked at 

the molecular level is unknown. Actually, some authors have even interpreted the 

co-occurrence of ZIKV infection and GBS as a temporal coincidence rather than 

a causal relation.8 The issue is further complicated by the fact that GBS – although 

described for the first time in 18599 – still presents, beyond its association with ZIKV, 

a largely unknown etiology. Genetic factors have been hypothesized to constitute a 

causal platform leading to the disease.10,11 However, research on candidate genes that 

could plausibly be involved in the pathogenesis of GBS has not been conclusive. For 
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instance, increased susceptibility to GBS in association with 

polymorphisms in CD1, low-affinity immunoglobulin gamma 

Fc region receptors II-a and II-b (FcRII-a and FcRII-b),12–14 

and interleukin-10 genes still awaits validation.15–17 

In parallel, a large body of research has investigated the 

possible association between GBS and infections. In par-

ticular, Campylobacter jejuni and Mycoplasma pneumoniae 

infections have been related to the disease,18–22 most pos-

sibly through autoimmune cross-reactive mechanisms.23–26 

At a lesser extent, human cytomegalovirus (HCMV) and 

Epstein–Barr virus (EBV) might also be involved in GBS. 

Indeed, although many reports did not relate HCMV to 

GBS,27–29 nonetheless, numerous cases of HCMV-GBS 

association have been described in transplant recipients and 

during pregnancy.30–36 Moreover, a prospective cohort study 

described 63 (12.4%) HCMV-GBS cases out of 506 patients 

with cases of GBS, with patients with HCMV-GBS more 

likely to be young – <35 years old in most of the cases – and 

female.37 Similarly, numerous clinical case reports describe 

GBS associated with EBV infection.38–42 

However, it remains unclear how such infectious patho-

gens – which are largely widespread and sluggishly latent 

worldwide43–48 – can, all of a sudden, attack the host causing 

the complex pathologic picture of the GBS.

Based on the autoimmune context that connects infec-

tions to GBS, we recently analyzed ZIKV polyprotein for 

peptide sharing with human proteins that, when altered, may 

associate with GBS-like syndromes and found large peptide 

overlap suggestive of a great potential for autoimmune cross-

reactivity.49 Here, we use the peptide platform common to 

ZIKV and GBS-associated human proteins and search for 

minimal immune determinants that are additionally shared 

with infections related to GBS such as the above-mentioned 

C. jejuni, HCMV, EBV, and M. pneumoniae. The scientific 

rationale is that different infectious pathogens might evoke 

a succession of immune responses converging on identical 

epitopic sequences and characterized by a progressively 

more rapid production of increasingly powerful antibodies 

on subsequent encounters with the same epitopic targets. 

Then, sharing of identical cross-reactive epitopes with host 

proteins can result in amplified cross-reactions and conse-

quent severe diseases, thus explaining the violence of the 

otherwise asymptomatic ZIKV infection.50 

Methods
Analyses were conducted on human proteins related to GBS 

and retrieved from UniProtKB Database (http://www.uniprot.

org/)51 using “myelin, (de)myelination, axonal neuropathy” as 

keywords (Table S1), as already detailed elsewhere.50 Refer-

ences for disease involvement are available at http://www.

uniprot.org/. Human proteins are indicated by the UniProt 

Accession name.

A set of pathogen proteomes was chosen for analyses 

based on the following criteria:

•	 belonging to infectious agents that have been reported as 

related to or concomitant, even occasionally, with GBS, 

ie, C. jejuni,18,19 M. pneumoniae,18,20–22 HCMV,18,30–37 

EBV,18,38–42 hepatitis E virus, genotype 1 (HEV),52 human 

papillomavirus type 16 (HPV16),53 influenza viruses,54 

dengue virus (DENV),55 West Nile virus (WNV),56 yellow 

fever virus (YFV),57 and varicella zoster virus (VZV);58

•	 for which proteome completeness has been established;

•	 with experimental evidence at protein level;

•	 belonging to the Swiss-Prot section reviewed by 

UniProtKB.

The pathogen proteomes are as follows (in alphabetical 

order, with abbreviations, number of proteins, number of 

amino acids (aa), and taxonomy ID): C. jejuni, 1623 proteins, 

507643 aa (192222); DENV, 10 proteins, 3392 aa (11059); 

EBV, 109 proteins, 51458 aa (10377); HEV, 3 proteins, 2467 

aa (652674); HCMV, strain Merlin, 168 proteins, 63460 aa 

(295027); HPV16, 8 proteins, 2426 aa (333760); influenza 

A virus, H1N1, 12 proteins, 4788 aa (211044); influenza A 

virus, H5N5, 12 proteins, 4809 aa (93838); influenza B virus, 

11 proteins, 4718 aa (518987); M. pneumoniae, 687 proteins, 

239888 aa (272634); VZV, 69 proteins, 35782 aa (10338); 

WNV, 13 proteins, 3430 aa (11082); YFV 13 proteins, 3411 

aa (11090); and ZIKV, 13 proteins, 3419 aa (64320). Pro-

teomes are described in detail at http://www.uniprot.org/.51 

Peptide matching analyses were conducted using the 

pentapeptide as a minimal immune unit59–61 and utilizing 

the elsewhere described pentapeptide platform shared 

between ZIKV and human proteins that, when altered, 

may associate with GBS.49 In brief, GBS-related proteins 

were obtained from UniProtKB51 using the keywords 

“myelin, (de)myelination, axonal neuropathy”. Then, 

the primary aa sequence of each ZIKV protein was dis-

sected into pentapeptides overlapping each other by four 

residues. For example, ZIKV protein C (Q32ZE1, aa 2-104, 

KNPKEEIRRIRIVNMLKRGVARVNPLGGLKRLPA-

GLLLGHGPIRMVLAILAFLRFTAIKPSLGLINRWGS-

VGKKEAMEIIKKFKKDLAAMLRIINARKERKRR) 

was sequentially dissected into KNPKE, NPKEE, PKEEI, 

KEEIR, and so forth until its last pentapeptide ERKRR, for 

a total of 99 pentamers. At the end, the 12 ZIKV proteins 

www.dovepress.com
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(prM considered as one protein) yielded 3370 pentapeptides. 

The same procedure was applied to calculate the number of 

pentapeptides present in the pathogen proteomes described 

earlier.

The 3370 ZIKV pentapeptides were probed for occur-

rences within the set of human proteins related to GBS using 

PIR peptide match program (http://research.bioinformatics.

udel.edu/peptidematch/index.jsp).62 A total of 222 ZIKV 

pentapeptides were found to occur throughout 97 human 

proteins related to GBS. The 97 human proteins related 

to GBS and sharing pentapeptide(s) with ZIKV have been 

previously detailed.49 

The pentapeptide platform common to ZIKV and GBS-

related proteins was used to search for commonalities with 

GBS-related pathogens. That is, each of the 222 ZIKV 

pentapeptides shared with the 97 GBS-related proteins was 

analyzed for occurrences in the pathogen proteomes of 

infectious agents that had been selected as described earlier.

The immunological potential of the peptide sharing was 

investigated using the Immune Epitope Database (IEDB; 

www.iedb.org) resource.63 Only epitopes that had been 

experimentally validated as immunopositive in the human 

host were considered.

Results
Pentapeptide(s) common to ZIKV,  
GBS-related human proteins, and  
GBS-related pathogens.
Table 1 shows the occurrences of the ZIKV pentapeptides 

shared with the 97 GBS-related proteins in the analyzed 

infectious agents. It can be seen that, with the exception of 

influenza B virus, the analyzed GBS-associated pathogens 

share pentapeptides common to ZIKV and human GBS-

related proteins.

Numerically, 135 out of 222 pentapeptides shared 

between ZIKV and the set of human GBS-related proteins 

occur and often recur throughout the pathogens under analy-

sis for a total of 206 multiple occurrences. As previously 

observed,64–67 such pentapeptide sharing is extremely high 

Table 1 Pentapeptides common to ZIKV, GBS-related human proteins, and GBS-related pathogens

Pentapeptidesa Pathogen

– Influenza B virus
EEIRR, PTQGS Influenza A virus (H5N1)
ASSLV, EEIRR Influenza A virus (H1N1)
TLETI, TVEVQ HPV16
AAARA, ALRGL, LAAAV, LRGLP, RLAAA HEV, genotype 1b

AEEVL, ALAGA, ALAGG, GERAR, LAGAL, LLSLK, LLVVL, SPGAG, TAVSA, VLTAV EBV

EALIT, FATTL, GAALR, GAGKT, GALEA, IFLST, ILAAL, LLLGR, LLLLT, LRIIN, RRLLG, TVSLG, VLTAV VZV
AAARA, EEEKE, EEIRR, FDLEN, GAALG, GAGKT, GEAAA, GTVSL, ILAAL, LLALA, LLGLL, LLLGR, LQDGL, 
LTAVR, LTCLA, LWLLR, SLGLD, STSQK, TAVSA, TVSLG

HCMV

AAAIF, AARGY, CSAVP, DRRWC, EFEAL, EFGKA, ETLGE, GCGLF, GDTAW, GEAAA, GETLG, GPSLR, 
GRARV, GSASS, GVPLL, LNDMG, NSTHE, QRGSG, RDLRL, RGYIS, RRDLR, RRWCF, RVILA, SAVPV, 
TAAGI, YISTR

DENV

AAAIF, AALGA, AARGY, ALAGA, ALGAI, ALRGL, ALVAV, ASAGI, ASSLV, CSAVP, DENHP, DRRWC, 
EALRG, EFEAL, EFGKA, ESSSS, FATTL, GAGKT, GCGLF, GDTAW, GEAAA, GRARV, GSASS, KGIGK, 
LAAAV, LRGLP, LVNGV, NSTHE, PRRLA, QRGSG, RDLRL, RGYIS, RRDLR, RRWCF, SAVPV, SLFGG, 
SPGAG, TAAGI, TEVEV, TKEEF, VEGLG, VSRGS, VTLGA, YISTR

WNV

EFEAL, EFGKA, ESSSS, GAGKT, GCGLF, GDTAW, LKDGR, NSTHE, QRGSG, TKEEF YFV
AAAIF, AAARA, ALAGG, ALEAE, ALGAI, ALGLT, DGLSE, EEARR, EGLKK, ENEAL, ESSSS, EVEET, GAGKT, 
GALEA, GLKKR, GPSLR, GSASS, IILLV, ILAAL, ILLMV, ISALE, KEVKK, LAAAV, LAGAL, LKDGR, LKGKG, 
LLAVP, LLGLL, LLLLT, LLTTA, LLVVL, LQDGL, LVEED, LVILL, NGVQL, PTQGS, RLAAA, RRALK, SLGLD, 
TEVEV, TKEEF, VEFKD, VVDPI, VVGLL

M. pneumoniae

AALGA, AKVEV, ALAGA, ALAGG, ALGAI, ALGLT, ALKDG, ALVAV, ASAGI, ASSLV, DENHP, DGLSE, 
EALIT, EALRG, EEEKE, EELEI, EFEAL, EGLKK, EKEWK, ENEAL, ENIKD, FDLEN, GAALG, GAGKT, GALEA, 
GEAGA, GETLG, GGGTG, GIMLL, GPSLR, GSASS, GTLPG, IFLST, IILLV, ILAAL, ILLMV, KEVKK, KGIGK, KGSLV, 
KKSGI, KNPKE, LAGAL, LALGG, LALGG, LDFSD, LKGKG, LLALA, LLAVP, LLGLL, LLLGR, LLLLT, LLSLK, 
LLVVL, LRIIN, LSTQV, LTAVG, LVILL, LVNGV, MLLSL, PRRLA, PSLGL, RRALK, RVILA, SEELE, SLFGG, SLGLI, 
STSQK, STTAS, TAAGI, TEVEV, TKEEF, TLETI, VEEDG, VEFKD, VEGLG, VLSMV, VNPLG, VRAAK, VSRGS, 
VTLGA, VVGLL, YLSTQ

C. jejuni

Notes: aPentapeptides with multiple occurrences in bold. bTwo HEVs, genotype 3, taxonomy IDs 509615 and 512345, share only 2 pentapeptides (ALRGL and LRGLP).
Abbreviations: ZIKV, Zika virus; GBS, Guillain–Barrè syndrome; HPV16, human papillomavirus type 16; HEV, hepatitis E virus, genotype 1; EBV, Epstein–Barr virus; VZV, 
varicella zoster virus; HCMV, human cytomegalovirus; DENV, dengue virus; WNV, West Nile virus; YFV, yellow fever virus.
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and unexpected given that the probability E of a ZIKV pen-

tapeptide to occur simultaneously in the set of the 13 GBS-

related pathogens and in the set of the 97 human GBS-related 

proteins is 6977141836772461e-6, ie, it is close to zero (Box 

1). This infinitesimally low value is in sharp contrast with the 

actual data displayed in Table 2. As a matter of fact, Table 

2 highlights an intense pentapeptide sharing that underlies 

a multiple cross-reactivity platform among the analyzed 

pathogens and the human host.

Immune potential of the pentapeptides 
common to ZIKV, GBS-related human 
proteins, and GBS-related pathogens
Such a high potential for cross-reactions appears likely 

also in view of the fact that most of the 135 pentapeptides 

detailed in Table 2 not only often recur among the GBS-

related pathogens (eg, the pentapeptides EEIRR, AAARA, 

ALAGG, GAGKT, GALEA, GPSLR, and GSASS given in 

bold in Table 1) but are also present in hundreds of epitopes 

experimentally validated as immunopositive in the human 

host. Table 2 shows a limited representative list of such 

immunopositive epitopic sequences.

Discussion
Starting from 2000,64 our laboratory described a massive pep-

tide overlap between proteins from infectious agents and the 

human proteome,65 thus calling attention to the cross-reactivity 

issue in immunology. In fact, the magnitude of such a peptide 

sharing leads to predict a high extent of cross-reactive immune 

responses following infections in the human host.66–72 

Here, we focus on the issue of multiple cross-reactivity 

and analyze the molecular connections between infectious 

pathogens related to GBS. We report on the presence of 

minimal immune determinants in the human host and 

repeatedly shared among infectious agents so different as the 

flaviviruses ZIKV, DENV, WNV, and YFV and the bacteria 

M. pneumoniae and C. jejuni. Such intrapathogen peptide 

commonality may originate multiple cross-reactions having 

the same peptide sequences as epitopic targets. The immu-

nological implications are that immune responses elicited by 

different successive infections may add up with intensified 

avidity and affinity at the level of cross-reactive sites, thus 

exacerbating autoimmune attacks in the host.

The extent of the autoimmune damage emerges from the 

analysis of the human proteins involved in the sharing, most 

of which are crucial components of the neurological network. 

An example among the many is the pentapeptide LAGAL 

that is shared by ZIKV, EBV, M. pneumoniae, and C. jejuni 

and is also present in three human proteins involved in myelin 

disorders, ie, CGT, GFAP, and MTMR2 (Tables S1 and S2).

•	 CGT or 2-hydroxyacylsphingosine 1-beta-galactos-

yltransferase is involved in the synthesis of sulfatide 

3-O-sulfogalactosylceramide,73 which is essential for 

paranodal junction formation and for the maintenance of 

ion channels on myelinated axons.74 Of note, the sulfatide 

blocks the binding of C. jejuni DNA-binding protein to 

Box 1 Theoretical probability E of a ZIKV pentapeptide to occur simultaneously in the set of the 13 GBS-related pathogens and in the 
set of the 97 human GBS-related proteins under analysis

The expected number of times E that one pentapeptide occurs in a protein is directly proportional to the number p of pentapeptides in the 
protein and inversely related to the number N of all possible pentapeptides, with N equal to 205 since each pentapeptide residue can be any of 20 
aa and assuming that all aa occur with the same frequency: accordingly, such expected number of times E is given by equation

E =
p
N

By considering two proteins, 1 and 2, of pentapeptide size p1 and p2, and two events E1 and E2 – that are assumed to be independent – that a 
same pentapeptide will be selected simultaneously in both proteins 1 and 2, then the expected number of times E is given by

E=E E
p
N
p
N

p p
N2

1 2 1 2 1 2• • =
•

=

In the case in point, the expected number of times E that a ZIKV pentapeptide will be simultaneously present in the set formed by the 97 human 
GBS-related proteins (Table S1) and in the set of the 13 GBS-related pathogen proteins is given by the formula:

E=
N

ZIKV human athogens
3

p p p• • p

where pZIKV = 3370 (no of ZIKV pentapeptides), phuman = 74004 (no of pentapeptides contained in the set of 97 human GBS-related proteins), 
ppathogens = 916732 (no of pentapeptides contained in the set of proteins from the 13 GBS-related pathogens), and N3 = 2015 (with N equal to 205). 
Solving the equation, one obtains E = 6,977141836772461e-6.

Abbreviations: ZIKV, Zika virus; GBS, Guillain–Barrè syndrome; aa, amino acids.
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myelinated nerves, a reaction that has been associated 

with C. jejuni-related GBS;75 

•	 GFAP or glial fibrillary acidic protein has been reported 

to be a marker of axonal GBS and outcome;76 

•	 Myotubularin-related protein 2 (MTMR2) is a phos-

phoinositide-3-phosphatase that, if altered, associates 

with demyelinating peripheral neuropathy characterized 

by excessive redundant myelin, also known as myelin 

outfoldings.77,78 MTMR2 appears to negatively regulate 

membrane homeostasis in Schwann cell myelination.79 

Another myotubularin-related protein, namely MTMR5, 

shares eight pentapeptides with ZIKV (eg, AVLLR, GPSLR, 

GLLIV, LQDGL, REEGA, SEELE, SLGLI, and VLSMV) and 

many of the said pentapeptides are also present in infectious 

agents (Table 1). MTMR5 pentapeptide sharing is noteworthy. 

Indeed, alterations of MTMR5 are involved in demyelinat-

ing neuropathies79 and, in addition and most interestingly, 

lead to impaired spermatogenesis.80–82 This datum might be 

a hint for widening the study of the still obscure reasons for 

gender differences in GBS pathogenesis.83 In this perspec-

tive, also future studies that extend analyses to non-peptidic 

GBS epitopes warrant attention. For example, B4GN1 or 

beta-1,4-N-acetylgalactosaminyltransferase 1 plays a role 

in spermatogenesis and, when altered, in male infertility;84 

is involved in the biosynthesis of gangliosides85 and pro-

duces a ceramide trisaccharide (N-acetyl-d-galactosaminyl- 

(N-acetylneuraminyl)-d-galactosyl-d-glucosylceramide) that 

is present in non-peptidic structural GBS epitopes (IEDB 

IDs: 139429 and 143251).

Although space precludes a detailed discussion of the data 

reported in Table 1, a final note is due with regard to WNV 

that hosts 44 out of the 135 pentapeptides common to ZIKV 

and GBS-related human proteins (Table 1). WNV infections 

Table 2 Epitopes experimentally validated as immunopositive in 
the human host and containing pentapeptide(s) common to ZIKV, 
GBS-related human proteins, and GBS-related pathogens

IEDB  
IDa

Epitopeb,c IEDB  
IDa

Epitopeb,c

10 aaAAAIFvi 446920 nlISALEea
2859 alRGLPiry 452231 ALAGGitmv
3546 apfdETLGEedkdld 452923 aseALAGAL
9980 dRGYISqy 454329 gSLGLIfal
11125 EALRGLPir 454747 illdhEKEWKl
14278 ESSSSdkp 455521 kLQDGLlhi
15968 fGDSYI 456221 LLAVPvpgv
19121 GDSYIi 456552 lprgLAGAL
21271 gmGEAAAIF 458233 rlvGIMLLl
21783 GPSLRtttv 459912 tlDENHPsi
24302 hlsLRGLPv 460498 vpAAARAgaia
36077 lGDTAW 462972 ALAGApyqa
37757 llrSTSQK 464145 dtyPALLVv
42819 mTKEEFtry 465337 ftASAGIqv
43963 nGCGLF 465643 GLDFSlpgm
47494 PFGDSy 467239 kLEGDLtgpsv
59141 slgLVILLvl 469571 qpEGLKKtl
59561 sLVNGVvrl 470656 sLLTTAevvv
62564 syhDRRWCF 471899 tpfGGGTGgf
64181 tiaydEEARR 472107 TVSLGgfeitppv
71730 vvlaGAALGvataaq 475411 AETDEprll
76146 ytpgsclagvlEALIThqre 475437 aeVEGLGkgva
95619 ngttrtVNPLGf 475912 apSSTSQel
108957 fLLGLLffv 477278 EEEKErntaa
113368 elilydkEEIRRi 478632 gidSSSPEv
118521 mlLKGKGdkaqie 479191 hENEALwreva
133702 srNSTHEmy 480858 klrEEARRk
162369 gQRGSGssf 481247 KTKDGvrev
162647 kEVEETata 483586 qSTTASlskk
162892 lpktGTVSL 483862 rEFGKAlql
176418 rALEAEkralw 484166 RLAAAarek
179238 maflrsvsRLAAAVf 485074 ryiEGLKKR
179920 vvRDLRLra 485864 sfSPGAGaf
180696 pasiAARGYi 486103 SLFGGtsgl
180816 wgnGCGLFgkggivt 486146 sLLALAGAv
182553 allaLNDMGk 487020 sVSRGSslk
185931 tkqtGSASSm 487072 sygpGPSLR
188820 avgtgtGAALGAgigALAGG 487689 trhKEVKKl
188921 mntkiatrlsvfALAGAlla 488045 VEEDGqlksl
194401 tLAAAVpki 488605 vVVDPIlsk
195482 iGETLGEkwksrlna 491301 GRARVsvev
207331 ELGKRvqal 492165 hrALVAVll
209443 gesGAGKTw 493078 lrfpNGVQL
213577 ktfTAAGI 494432 rrlLLLLTl
217605 REEGAvdksy 506799 LLTRScail
220715 vEVQLLeskty 506908 lPRRLAiql
220742 vGAALRpaf 510341 ypASSLVv
222394 GEAGAiervl 515064 epGEAAAggaaEEARR
222457 geGLLIVkv 536076 GTLPGsaeppLTAVR
222756 heySEELEkl 539058 ahftdpssvAARGYISt
222989 kegyVLTAV 539081 ALRGLPvry
236364 VRAAKfwk 539140 CSAVPVdw
420040 qnpqILAAL 539287 GEAAAIFmt
420274 tPTQGSvl 539600 lmyfhRRDLRLasna

IEDB  
IDa

Epitopeb,c IEDB  
IDa

Epitopeb,c

423402 lFATTLfigympihc 541359 dAALGAeem
423807 aaaVVGLLy 541798 eLLSLKy
424246 EEARRLLGy 542210 GAALRGLsl
427527 stTAVSAry 542311 ghtLLALAt
427966 twnAVLLRy 542373 gLKDGVall
435741 sRVILAgnll 544887 RRLLGkykf
436632 aTLETIlrh 546136 vLRIINeptaaai
437505 GEAAAkeew 548062 elkLRGLPvsgt

Notes: aEpitope IEDB IDs are listed in ascending numerical order. Details and 
references are available at http://www.iedb.org/idsearch.php. bEpitope peptide 
sequences are given in one letter code. cShared peptide fragments are given in capital 
letters.
Abbreviations: ZIKV, Zika virus; GBS, Guillain–Barrè syndrome; IEDB, Immune 
Epitope Database.

Table 2 (Continued)

(Continued)
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may cause acute flaccid paralysis through a pathogenic 

mechanism that most possibly involves disrupted glutamate 

transporter expression in the spinal cord.56 Hence, it draws 

our attention the presence of three pentapeptides (namely 

ALRGL, GAALR, and LLGLL) that are present in the amino 

acid transporter SATT (or SLC1A4 or ASCT1) (Table S2). 

SATT is essential in brain for d-serine transport86 and is 

mostly expressed in hippocampal pyramidal and dentate gran-

ule neurons, and, in the cerebellum, Purkinje cells and their 

dendrites, thereby suggesting a role in pathophysiological 

processes that involve glutamate toxicity.87 Indeed, activation 

of N-methyl-d-aspartate receptors (NMDARs) by synapti-

cally released l-glutamate requires occupancy of coagonist 

binding sites in the tetrameric receptor by either glycine or 

d-serine, so that altered SATT and, thereby, altered d-serine 

flux in the brain would alter NMDAR activity. The hypothesis 

of a potential link between SATT-induced NMDAR altera-

tion and flaccid paralysis seems to find a support in the fact 

that flaccid paraplegia has been observed in patients with 

autoantibodies to NMDARs.88–90

Conclusion
We observe that the main caveats of the present research 

are the limited number of the analyzed pathogens and, in 

addition, the fact that, in front of the tendency of infectious 

pathogens to mutate, only representative taxonomy types 

have been analyzed. Hence, the level of intrapathogen 

multiple cross-reactivity might be even underestimated. A 

second limitation of the present study is given by the fact that 

it  mainly analyzes peptidic epitopic sequence potentially 

related to GBS. As a matter of fact, the acute paralytic GBS 

is also characterized by autoantibodies against glycolipids 

and gangliosides.91,92 

Given these notes of caution, the present study offers a 

scientific rationale and a methodology to analyze the molecu-

lar role of intrapathogen sharing in the pathologic sequelae 

that may be associated with multiple infections. Indeed, the 

high serological cross-reactivity that exists among flavivi-

ruses (eg, ZIKV, DENV, WNV, and YFV)93,94 exemplifies 

the possibility that different infections occurring at different 

times may sum up onto a same set of epitopic determinants 

and result in hyperimmunogenicity,95,96 possibly resulting in 

neurological damage.
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Supplementary materials 

Table S1 List of the 97 human proteins related to myelin, (de)myelination, and/or axonal neuropathies and sharing pentapeptides 
with ZIKV polyprotein (human proteins are reported by UniProt entry, a brief description of function, and aa length)

ABCD1. ATP-binding cassette sub-family D member 1. Adrenoleukodystrophy. Progressive multifocal demyelination of the CNS. 745
ACATN. Acetyl-coenzyme A transporter 1. Cerebral and cerebellar atrophy and hypomyelination. 549
ACY2. Aspartoacylase. White matter vacuolization and demyelination. 313
ADCY6. Adenylate cyclase type 6. Hypomyelination neuropathy. 1168
ANAG. Alpha-N-acetylglucosaminidase. Axonal neuropathies. 743
ARSA. Arylsulfatase A. Hydrolyzes cerebroside sulfate. Intralysosomal storage of cerebroside-3-sulfate, with a diffuse loss of myelin in the 
CNS. 

507

CC177. Myelin proteolipid protein-like protein. 707
CGT. 2-Hydroxyacylsphingosine 1-beta-galactosyltransferase. Synthesis of galactocerebrosides, which are abundant in the myelin of the 
CNS and peripheral nervous system.

541

CH60. 60 kDa heat shock protein, mitochondrial precursor. Hypomyelinating leukodystrophy characterized by infantile-onset rotary 
nystagmus, progressive spastic paraplegia, neurologic regression, motor impairment, profound mental retardation.

573

CLCN2. Chloride channel protein 2 (ClC-2). Leukoencephalopathy with ataxia. White matter abnormalities on brain MRI suggesting myelin 
microvacuolation. 

898

CLD11. Claudin-11. Oligodendrocyte-specific protein. Oligodendrocyte-specific protein is concentrated in CNS myelin, seems to modulate 
proliferation and migration of oligodendrocytes, is an autoantigen in the development of autoimmune demyelinating disease.

207

CMC1. Calcium-binding mitochondrial carrier protein Aralar1. Mitochondrial aspartate glutamate carrier 1. Epileptic encephalopathy, early 
infantile, characterized by global cerebral hypomyelination. 

678

CN37. 2’,3’-Cyclic-nucleotide 3’-phosphodiesterase. CN37 is the third most abundant protein in CNS myelin. 421
CNTN1. Contactin-1 precursor. Neural cell surface protein F3. Involved in the formation of paranodal axo-glial junctions in myelinated 
peripheral nerves. Myopathy, hypotonia, muscle weakness.

1018

CNTP1. Contactin-associated protein 1. Involved in the saltatory conduction of nerve impulses in myelinated nerve fibers; demarcates 
the paranodal region of the axo-glial junction; may have a role in the signaling between axons and myelinating glial cells. Axoglial disease 
characterized by degeneration of anterior horn neurons, extreme skeletal muscle atrophy, and joint contractures leading to various  
degrees of flexion or extension limitations.

1384

CNTP2. Contactin-associated protein-like 2. Function and pathology as for CNTP1. 1331
CTDP1. RNA polymerase II subunit A C-terminal domain phosphatase. Hypomyelination of the peripheral nervous system. 961
CTL1. Choline transporter-like protein 1. May be involved in myelin production. 657
CXB1. Gap junction beta-1 protein. Connexin-32. Associated with both demyelinating and axonal neuropathies. 283
CXG2. Gap junction gamma-2 protein. Connexin-46.6. Hypomyelinating leukodystrophy with symptoms of Pelizaeus–Merzbacher  
disease. 

439

CXG3. Gap junction gamma-3 protein. Connexin-30.2. Expressed within myelinating glial cells of the CNS and peripheral  
nervous system.

279

DNJB2. DNAJ homolog subfamily B member 2. Axonal neuropathies. Muscle weakness and atrophy resulting in gait impairment and  
loss of reflexes due to impaired function of motor nerves.

324

DPYL2. Dihydropyrimidinase-related protein 2. Collapsin response mediator protein 2. Neurodegeneration. 572
DRP2. Dystrophin-related protein 2. Required for normal myelination and the formation of Cajal bands in myelinating Schwann cells. 957
DYHC1. Cytoplasmic dynein 1 heavy chain 1. Axonal neuropathy. Neuromuscular disorder characterized by degeneration of the anterior 
horn cells of the spinal cord, leading to symmetrical muscle weakness and atrophy.

4646

EGR2. E3 SUMO-protein ligase EGR2. Hypomyelinating/amyelinating neuropathies. 476
ENOG. Gamma-enolase. Has neurotrophic and neuroprotective properties on a broad spectrum of CNS neurons. 434
ENPP6. Ectonucleotide pyrophosphatase/phosphodiesterase family member 6. Choline-specific glycerophospho-diester  
phosphodiesterase. 

440

EXOS8. Exosome complex component RRP43, cerebellar and corpus callosum hypoplasia, abnormal myelination of the CNS, and spinal 
motor neuron disease.

276

EZRI. Ezrin. Cytovillin. Expressed in cerebral cortex, basal ganglia, hippocampus, hypophysis, and optic nerve. 586
F168B. Myelin-associated neurite-outgrowth inhibitor. Modulates neurogenesis. Expressed in the brain, within neuronal axonal fibers, and 
associated with myelin sheets.

195

FA2H. Fatty acid 2-hydroxylase. Leukodystrophy. 372
FGD4. FYVE, RhoGEF, and PH domain-containing protein 4. Peripheral demyelinating neuropathies. 766
FIG4. Polyphosphoinositide phosphatase. Peripheral demyelinating neuropathies. 907
GDAP1. Ganglioside-induced differentiation-associated protein 1. Axonal neuropathies. 358
GDIA. Rab GDP dissociation inhibitor alpha. Oligophrenin-2. 447
GELS. Gelsolin. Gelsolin is specifically enriched in myelin-forming cells. 782

(Continued)
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GFAP. Glial fibrillary acidic protein. Leukodystrophy with macrocephaly, seizures, and psychomotor retardation 432
GNAO. Guanine nucleotide-binding protein G(o) subunit alpha. Epileptic encephalopathy. Brain abnormalities, such as cerebral atrophy or 
thin corpus callosum.

354

GPM6A. Neuronal membrane glycoprotein M6-a. Involved in neuronal differentiation, including differentiation and migration of neuronal 
stem cells. 

278

GPR6. G-protein coupled receptor 6 (sphingosine-1-phosphate receptor GPR6). Blocks myelin inhibition in neurons. 362
HS71A. Associates with myelin basic protein and proteolipid protein in multiple sclerosis brains. 641
HS90A. Protection of oligodendrocyte precursor cells. 732
HSPB1. Heat shock protein beta-1. Axonal neuropathy. 205
HSPB8. Heat shock protein beta-8. Axonal neuropathy. 196
HTRA1. Serine protease HTRA1. Demyelination of the cerebral white matter with sparing of U fibers 480
HYCCI. Hyccin. Downregulated by CTNNB1 protein A. Leukodystrophy, hypomyelinating. 521
IL7RA. Interleukin-7 receptor subunit alpha. Multiple sclerosis 459
KIF1B. Kinesin-like protein KIF1B (Klp). Axonal neuropathy. 1816
LMNA. Prelamin-A/C.b Axonal neuropathy. 664
LMNB1. Lamin-B1 precursor. Axonal neuropathy. 586
LRSM1. E3 ubiquitin-protein ligase LRSAM1.
Axonal neuropathies in the absence of myelin alterations.

723

MAG. Myelin-associated glycoprotein precursor. 626

MAL. Myelin and lymphocyte protein. 153
MERL. Merlin.Moesin-ezrin-radixin-like protein. Neurofibromin-2. Schwannomin. 595
METK1. S-Adenosylmethionine synthase isoform type-1. Brain demyelination due to methionine adenosyltransferase deficiency. 395
MFN2. Mitofusin-2. Axonal neuropathy. 757
MPZL3 Myelin protein zero-like protein 3 precursor. 235
MRF Myelin regulatory factor. 1151
MRFL Myelin regulatory factor-like protein. 910
MTMR2. Myotubularin-related protein 2. MTMR2. Demyelination. 643
MTMR5. Myotubularin-related protein 5. Demyelination. 1867
MTMRD. Myotubularin-related protein 13. Demyelinating neuropathy. 1849
MYEF2. Myelin expression factor 2. 600
MYO1D. Unconventional myosin-Id. Expressed in myelinating oligodendrocytes. 1006
MYPR. Myelin proteolipid protein. It is the major myelin protein from the CNS. Hypomyelinating leukodystrophy. 277
MYT1. Myelin transcription factor 1. May play a role in: development of neurons and oligodendroglia in the CNS; differentiation of 
oligodendrocytes; regulation of myelin gene transcription.

1121

MYT1L. Myelin transcription factor 1-like protein. May play a role in development of neurons and oligodendroglia in the CNS. 1186
NDRG1. Protein NDRG1. Demyelinating neuropathy. 394
NFH. Neurofilament heavy polypeptide. Amyotrophic lateral sclerosis. Axonal degeneration in the absence of myelin alterations. 1026
NFL. Neurofilament light polypeptide. Demyelinating neuropathy. 543
NRCAM. Neuronal cell adhesion molecule precursor. Plays a role in the formation and maintenance of the nodes of Ranvier on  
myelinated axons.

1304

OPALI. Opalin. Oligodendrocytic myelin paranodal and inner loop protein. 141
P5CR2. Pyrroline-5-carboxylate reductase 2. Hypomyelinating leukodystrophy. 320
PARD3. Partitioning defective 3 homolog, modulates peripheral myelination 1356
PRAX. Periaxin. Demyelinating neuropathy. 1461
PTPRC. Receptor-type tyrosine-protein phosphatase C. Multiple sclerosis. 1304
RPAC1. DNA-directed RNA polymerases I and III subunit RPAC1. Hypomyelinating leukodystrophy. 346
RPC1. DNA-directed RNA polymerase III subunit RPC1. Hypomyelinating leukodystrophy. 1390
RPC2. DNA-directed RNA polymerase III subunit RPC2. Hypomyelinating leukodystrophy. 1133
RTN4R. Reticulon-4 receptor. Receptor for myelin-associated glycoprotein. May play a role in regulating axonal regeneration and  
plasticity in the adult CNS.

473

S3TC2. SH3 domain and tetratricopeptide repeat-containing protein 2. Demyelinating neuropathy. 1288
SAP. Prosaposin. Demyelination, periventricular white matter abnormalities, peripheral neuropathy. 524
SATT. Neutral amino acid transporter A. Developmental delay, microcephaly and hypomyelination. 532
SCRIB. Protein scribble homolog. Regulates myelination and remyelination in the CNS. 1630
SDHA. Succinate dehydrogenase (ubiquinone) flavoprotein subunit, mitochondrial. Progressive leukoencephalopathy. 664
SMBP2. DNA-binding protein SMUBP-2. Axonal neuropathy. 993
STXB1. Syntaxin-binding protein 1. Brain hypomyelination. 594
SYAC. Alanine–tRNA ligase, cytoplasmic. Axonal neuropathy. 968

Table S1 (Continued)
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SYDC. Aspartate–tRNA ligase, cytoplasmic. Hypomyelination and white matter lesions in the cerebrum, brainstem, cerebellum, and spinal 
cord. 

501

SYG. Glycine–tRNA ligase. Axonal neuropathy. 739
SYHC. Histidine–tRNA ligase, cytoplasmic. Axonal neuropathy. 509
SYRC. Arginine–tRNA ligase, cytoplasmic. Leukodystrophy. Ataxia associated with diffuse hypomyelination apparent on brain MRI. 660
TEN4. Teneurin-4. Regulates the myelination of small-diameter axons in the CNS. Essential tremor. 2769
TNR1A. Tumor necrosis factor receptor superfamily member 1. Involved in multiple sclerosis. 455
TRIM2, Tripartite motif-containing protein 2. Axonal neuropathy. 744
TRPV4. Transient receptor potential cation channel subfamily V member 4. Axonal neuropathy. 871

Notes: Human proteins were retrieved using “myelin, (de)myelination, axonal neuropathy” as keywords. Proteins are indicated by UniProtKB/Swiss-Prot entry names, 
aa length, and listed in alphabetical order. Details and references for disease involvement are available at http://www.uniprot.org/.
Abbreviations: ZIKV, Zika virus; aa, amino acids; CNS, central nervous system; MRI, magnetic resonance imaging.

Table S2 Pentapeptide platform shared by ZIKV polyprotein and human proteins related to myelin, (de)myelination, and/or axonal 
neuropathies: 222 ZIKV pentapeptides (in bold) recur throughout 97 proteins (in parentheses as UniProt entry names)

AAAAR (CXG3); AAAIF (GELS); AAARA (NFH); AALGA (GPR6); AARGY (ARSA); AEEVL (SYG); AEMEE (MTMR2); AETDE (TEN4); 
AGGFA (PRAX); AKFTC (CXG2); AKVEV (NFH); ALAGA (ARSA; CLCN2; GPM6A); ALAGG (DPYL2); ALEAE (CTDP1; SCRIB); ALGAI 
(NRCAM); ALGLT (ANAG); ALKDG (TEN4); ALRGL (SATT); ALVAV (SYDC); APAYS (F168B; HSPB1); ARRAL (LMNB1; MYEF2); ASAGI 
(MRF); ASDSR (ANAG); ASSLV (MAL); AVLLR (MTMR5); CRECT (TRIM2); CSAVP (MYPR); CYSQL (IL7RA); DENHP (MTMR5); DGLSE 
(FIG4); DHSGK (DRP2); DIEMA (SYDC); DRRWC (TRPV4); DTVNM (CXG3); EALIT (CTL1); EALRG (SCRIB); EDVNL (RPC2); EEARR 
(ABCD1; EZRI); EEEKE (DYHC1; HS90A; NFH); EEIRR (MFN2); EELEI (MRFL); EEPML (CXG2); EFEAL (EZRI); EFGKA (MYO1D); EGLKK 
(TRIM2); EKEWK (SYRC); ELGKR (FGD4); ENEAL (MRFL); ENIKD (DYHC1); EPARI (SCRIB); ERLQR (SMBP2); ESSSS (MTMRD); 
ETLGE (SCRIB); ETLHG (NDRG1); EVEET (NFL); EVQLL (PRAX); FATTL (DRP2); FDLEN (ACY2); FPDSN (TRPV4); FVVDG (MYO1D); 
GAALG (CXG3); GAALR (CNTP1; SATT); GAGKT (DYHC1; MYO1D); GALEA (ANAG); GCGLF (SMBP2); GDSYI (GELS); GDTAW 
(SYAC); GEAAA (NFH); GEAGA (PRAX); GERAR (SMBP2); GESSS (GDIA); GETLG (SCRIB); GGGCA (CH60); GGGTG (RTN4R); 
GIMLL (CTL1); GKRKR (LMNB1); GLDFS (CMC1); GLKKR (MPZL3); GLLIV (MTMR5); GPSLR (MTMR5; HS90A); GQVVT (LMNA; 
PRAX); GRARV (GELS); GSASS (CC177; CXG2); GSQHS (IL7RA); GTLPG (RTN4R); GTRGP (SCRIB); GTVSL (PARD3); GVPLL (SMBP2); 
HFSLG (MFN2); HSDLG (MAG); IAACL (CLCN2); IEPAR (SCRIB); IFLST (DYHC1); IILLV (TRPV4); IKDTV (MERL); ILAAL (SAP); ILAFL 
(S3TC2); ILLMV (GPM6A); IPGLQ (S3TC2); IPKSL (KIF1B); ISALE (NRCAM); ISRQD (TEN4); KEVKK (EXOS8); KGIGK (RPAC1); KGSLV 
(SYAC); KKSGI (MYT1L); KNPKE (KIF1B); KTKDG (HSPB1; HSPB8); LAAAV (S3TC2); LAGAL (CGT; GFAP; MTMR2); LALGG (P5CR2); 
LDFSD (CMC1); LEERG (FGD4); LEGDL (LMNB1); LGLQR (MYO1D); LIYTV (MTMRD); LKDGR (TEN4); LKDGV (SYHC); LKGKG 
(CH60); LKMDK (MERL); LLALA (ABCD1; ARSA; ENPP6; S3TC2); LLAVP (ACATN); LLGLL (CLCN2; CNTN1; SATT); LLLGR (HTRA1); 
LLLLT (CLD11); LLSLK (HYCCI); LLTRS (P5CR2); LLTTA (CH60); LLVVL (PTPRC); LNDMG (NRCAM); LQDGL (MTMR5); LRGLP 
(CN37); LRIIN (HS71A); LSTQV (ACATN); LTAVG (CXG2); LTAVR (RTN4R); LTCLA (IL7RA); LVDRE (KIF1B); LVEED (MYT1); LVILL 
(HS90A; TEN4); LVNGV (SYRC); LWLLR (ABCD1); MAVLV (ADCY6); MLELD (ENOG); MLLSL (ADCY6); MSWFS (ADCY6); NAALG 
(SDHA); NGVQL (SYRC); NSFLV (DPYL2); NSTHE (NRCAM); PALLV (CXB1; MTMR2; NDRG1); PFAAG (SCRIB); PFGDS (ARSA); 
PRRLA (P5CR2); PSLGL (PARD3; OPALI); PTQGS (CN37); PVGRL (CXG3); PVILD (SAP); QLLYF (TRPV4); QRGSG (CMC1); RDLRL 
(CLCN2; NFL); REEGA (MTMR5); RFEEC (MFN2); RGECH (TEN4); RGYIS (CH60); RLAAA (PRAX); RPALL (NRCAM; MTMRD); RPASA 
(RTN4R); RRALK (METK1); RRDLR (DYHC1); RRLAA (FA2H); RRLLG (MAG); RRWCF (TRPV4); RVILA (RPC2); SAVPV (MYPR); SEELE 
(MTMR5); SGKRS (MTMR2); SLFGG (CLCN2; GELS); SLGLD (ADCY6); SLGLI (FIG4; MTMR5); SLRST (DRP2); SLTCL (IL7RA); SPGAG 
(DNJB2); SSSPE (DYHC1); SSTSQ (HYCCI); STSQK (CNTP2); STTAS (EGR2); TAAGI (P5CR2); TAVSA (STXB1); TEVEV (MAG); 
TKEEF (CMC1); TKNGS (SMBP2); TLETI (TEN4); TPVGR (CXG3); TQGSA (ARSA); TVDIE (RPC2); TVEVQ (TNR1A); TVSLG (GPR6); 
VATGG (SDHA); VDGDT (CXG3; MYO1D); VEEDG (DNJB2); VEFKD (MYEF2); VEGLG (NRCAM); VFIYN (KIF1B); VLDLH (LRSM1); 
VLSMV (MTMR5); VLTAV (CXG2); VNPLG (PTPRC); VPERA (RTN4R); VQLLA (CMC1); VRAAK (NFL); VSRGS (TRPV4); VSRME 
(GNAO); VSYVV (ADCY6); VTLGA (PRAX); VVAAE (CXB1; GPR6); VVDGD (MYO1D); VVDPI (RPC1); VVGLL (GDAP1); YISTR 
(STXB1); YLSTQ (ACATN); YSLMA (ANAG)

Abbreviation: ZIKV, Zika virus.

Table S1 (Continued)
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