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Abstract: A milestone of molecular medicine is the identification of dystrophin gene mutation 

as the cause of Duchenne muscular dystrophy (DMD). Over the last 2 decades, major advances 

in dystrophin biology and gene delivery technology have created an opportunity to treat DMD 

with gene therapy. Remarkable success has been achieved in treating dystrophic mice. Several 

gene therapy strategies, including plasmid transfer, exon skipping, and adeno-associated 

virus-mediated microdystrophin therapy, have entered clinical trials. However, therapeutic benefit 

has not been realized in DMD patients. Bridging the gap between mice and humans is no doubt 

the most pressing issue facing DMD gene therapy now. In contrast to mice, dystrophin-deficient 

dogs are genetically and phenotypically similar to human patients. Preliminary gene therapy 

studies in the canine model may offer critical insights that cannot be obtained from murine 

studies. It is clear that the canine DMD model may represent an important link between mice 

and humans. Unfortunately, our current knowledge of dystrophic dogs is limited, and the full 

picture of disease progression remains to be clearly defined. We also lack rigorous outcome 

measures (such as in situ force measurement) to monitor therapeutic efficacy in dystrophic 

dogs. Undoubtedly, maintaining a dystrophic dog colony is technically demanding, and the cost 

of dog studies cannot be underestimated. A carefully coordinated effort from the entire DMD 

community is needed to make the best use of the precious dog resource. Successful DMD gene 

therapy may depend on valid translational studies in dystrophin-deficient dogs.

Keywords: Duchenne muscular dystrophy, gene therapy, dystrophin, adeno-associated virus, 

exon-skipping, canine model

Introduction
Duchenne muscular dystrophy (DMD) is the most common lethal muscle disease 

caused by dystrophin gene mutation.1–3 It affects 1–3 boys per 10,000  male birth 

worldwide.4,5 Patients start to lose their mobility around 2–6 years of age and are 

often wheelchair bound by their early teenage years. Life expectancy is shortened to 

one-third to half of normal as a consequence of respiratory insufficiency and/or heart 

failure. DMD remains an incurable disease today.

In 1987, the coding sequence of the dystrophin gene was discovered and deciphered.3 

Dystrophin is a subcellular cytoskeletal protein. It scaffolds a series of transmembrane 

and cytosolic proteins (including dystroglycans, sarcoglycans, sarcospan, neuronal 

nitric oxide synthase (nNOS), syntrophin, and dystrobrevin) into a dystrophin-asso-

ciated glycoprotein complex (DGC). The DGC plays the important mechanical and 

signaling roles in muscle cells. The cloning of the dystrophin gene led to the recognition 

that the loss of dystrophin expression underlies clinical manifestations of DMD.1 The 
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discovery of the dystrophin gene has revolutionized DMD 

diagnosis and created hope for a cure with gene therapy. The 

reasoning is straightforward. If a method can be invented 

to deliver a functional dystrophin gene into the diseased 

muscle cells, the problem will be solved. Transgenic stud-

ies confirmed this hypothesis, and, it was also found that 

dystrophin overexpression was not toxic.6,7 Meanwhile, excit-

ing advances were made in dystrophin biology and muscle 

gene transfer,8–15 heralding a new era of muscle gene therapy. 

To many, a possible cure of DMD by gene therapy appeared 

just around the corner.

Genes that can be used  
to treat DMD
The discovery of the dystrophin gene has also raised a 

seemingly insurmountable challenges to the nascent field of 

DMD gene therapy. The gene itself is huge. The 2.5-mega 

base (mb) gene contains 79 exons, and it transcribes into 

a 14-kb cDNA.2 A vehicle that is capable of carrying the 

full-length dystrophin gene is beyond the reach of the 

current technology. A few viral vectors that may have the 

packaging capacity for the full-length dystrophin coding 

sequence (such as gutted adenovirus and herpes virus) 

are very inefficient in transducing whole-body muscle 

cells. The hurdle of gene size was partially overcome by 

genotype–phenotype analysis in patient populations and by 

spectacular case reports of individual patients.16–19 These 

studies suggest that deletion of a fairly large region of the 

dystrophin gene may not cause significant clinical conse-

quences as long as the remaining parts are in frame and the 

most critical regions are retained.20–22 This reading frame 

theory constitutes the foundation of current DMD gene 

therapy. Briefly, two distinctive roads are taken. One approach 

attempts to generate a synthetic, minimized dystrophin gene 

that expresses these key components (Figure 1).23 Examples 

of these synthetic genes include the highly functional 

minidystrophin genes (6–8 kb) and the highly abbreviated 

microdystrophin genes (,4 kb).24 The other approach is to 

restore the reading frame using antisense oligonucleotide 

(AON)-mediated exon skipping.25

R2-15/ R18-23/ C (also called R16-17/ C) micro-dystrophin69

H4 CR1H1N 16 17 24 C1110987654H2 12 13 14 1515 1819 16175 4 H215

17-48 mini-dystrophin19

H3 H4 CR C19 21 22 23 24201916 17 18321H1N 1110987654H2 12 13 14 15 1

H3 H4 CR C21 22 23 2420

H2-R19 mini-dystrophin24

18 1916 17321H1N 1110987654H2 12 13 14 15

H2-R15 mini-dystrophin69

H3 H4 CR C16 17 18 19 21 22 23 2420321H1N 1110987654H2 12 13 14 15

321H1N H4 CR CH2 24

R4-R23/ C micro-dystrophin24
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R3-19/ 20-21/ C micro-dystrophin (also called   3990)  
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Figure 1 Schematic illustration of full-length dystrophin, utrophin, and representative minidystrophin and microdystrophin.
Abbreviations: N, the N-terminal domain of the dystrophin protein; H1–4, hinges 1–4 in the rod domain of the dystrophin protein; numeric numbers, spectrin-like repeats 
in the dystrophin rod domain. Positively charged repeats are in white color. Repeats 11–17 represent the second actin-binding domain. CR, the cysteine-rich domain in the 
dystrophin protein; C, the C-terminal domain of the dystrophin protein; nNOS, neuronal nitric oxide synthase. Empty boxes denote the regions that are deleted in each 
respective minidystrophin and microdystrophin construct. Among three microgenes listed here, the ∆R3–19/∆20–21/∆C microdystrophin has been tested in affected dogs and 
human patients. However, these trials have failed to demonstrate a therapeutic efficacy. The hinge 2 region in ∆R4–R23/∆C microdystrophin has been shown to compromise 
function. The potentially deleterious hinges 2 and 3 are removed in the ∆R2–15/∆R18–23/∆C microgene. Further, this microgene carries the nNOS localization domain.
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One obvious problem associated with dystrophin replace-

ment is the potential immune rejection of the newly intro-

duced protein. The use of an existing gene may minimize this 

risk. Although intensive research is ongoing to reestablish 

dystrophin expression, creative means have also been devel-

oped using the alternative self-genes.26

Soon after the discovery of the dystrophin gene, the 

utrophin gene was identified.27–29 Utrophin shares structural 

and functional similarity to dystrophin (Figure 1). Although 

utrophin cannot carry out all the functions of dystrophin, it 

still provides substantial benefit to dystrophic muscle.30,31 

In addition to utrophin, increased expression of several 

functionally relevant proteins (such as laminin, sarcoglycan, 

sarcospan, integrin, and nNOS) has also been shown to reduce 

muscular dystrophy in the mouse model.32–36

Another promising field for alternative gene therapy 

is the identification of genetic modifiers. Several highly 

promising candidate genes have emerged. Upregulation 

of follistatin, insulin-like growth factor 1, ADAM12, 

cytidine monophosphate-sialic acid hydroxylase (CMAH), 

sarcoplasmic reticulum calcium ATPase, or downregulation 

of myostatin, osteopontin, cyclophilin D, latent transforming 

growth factor-β binding protein 4, vascular endothelial 

growth factor receptor 1, and histone deacetylase have been 

shown to reduce dystrophinopathy in animal models.37–48 

Targeting these alternative genes will likely complement 

dystrophin gene replacement/repair therapies.

We cured a DMD mouse
Many dystrophin-deficient mice have been generated, such 

as naturally occurring mdx; chemically induced mdx2cv, 

mdx3cv, mdx4cv, and mdx5cv; and exon 52 knockout 

mdx (mdx52) mice (Figure 2).49–51 Unlike human patients, 

dystrophin-null mice exhibit very mild symptoms until they 

get very old (Figure 2).52,53 To create a phenotypic model that 

more closely mimics human disease, a great variety of double 

knockout (dKO) mice were made. These include utrophin/

dystrophin dKO, myoD/dystrophin dKO, integrin/dystrophin 

dKO, δ-sarcoglycan/dystrophin dKO, CMAH mdx, and mdx/

mTR mice (Figure 2).32,48,54–59 Although there are genetic and/

or phenotypic differences between mice and humans, these 

mouse models, nevertheless, provide a great opportunity to 

test experimental DMD gene therapy in a live animal.

Early gene therapy studies were performed on a single-

limb muscle in mdx mice. The primary end points of these 

studies were dystrophin expression, DGC restoration, 

myofiber degeneration/regeneration, sarcolemmal integrity, 

and muscle force. Long-term robust dystrophin expression was 

first demonstrated using vectors based on adeno-associated 

virus (AAV).24,60 AAV is a single-stranded DNA virus. 

In an AAV vector, all the wild-type viral genes are removed, 

and a therapeutic/marker gene expression cassette serves as 

the vector genome. The naturally occurring AAV serotypes 

and the molecularly engineered AAV capsids have offered 

essentially unlimited options for gene delivery.61,62 The major 

drawback of AAV is its 5 kb packaging capacity.63–65 Only 

the massively truncated microgenes can fit into a single 

AAV vector. Although a microgene only carries ∼30% 

of the dystrophin coding sequence, local AAV microgene 

injection has ameliorated muscle pathology in mdx mice.24,60 

Subsequent studies suggest that AAV microdystrophin 

vectors also improved muscle force and prevented 

eccentric contraction-induced injury in dystrophin-deficient 

mice.66,67

There remain several limitations of the AAV microgene 

vector. First, it cannot anchor nNOS to the sarcolemma. 

In normal muscle, dystrophin helps recruit nNOS to the 

membrane.31,68–70 In DMD, the loss of membrane-associated 

nNOS results in muscle ischemia.69,71,72 Further, nitrosative 

stress induced by delocalized nNOS inhibits muscle 

force generation.70 Second, the microgene cannot fully 

restore muscle strength to the normal level.24 The larger 

minigene is needed for better force recovery.24 Third, the 

configuration of the earlier versions of the microgene may 

not be ideal.24,60 In this regard, it has been suggested that 

the inclusion of hinge 2 and/or hinge 3 may compromise 

the function.73,74 The first issue was addressed recently by 

identification of dystrophin spectrin-like repeats 16/17 

(R16–17) as the nNOS-binding domain.69 Incorporation 

of this domain in the microgene results in the R16–17/∆C 

microgene that normalizes nNOS localization (Figure 1).69, 70 

To address the second issue, innovative strategies are needed 

to expand the AAV packaging capacity. This is achieved using 

various dual-vector systems, including the trans-splicing, 

overlapping, and hybrid vectors.75–77 The trans-splicing vec-

tors are based on the head-to-tail concatamerization of the 

AAV inverted terminal repeats. The overlapping vectors 

are based on homologous recombination of the transgene. 

Newly developed hybrid vectors integrate the advantages of 

these two approaches and may result in the most efficient 

reconstitution of a split gene.78,79 Promising minidystrophin 

expression has been achieved with all three dual-vector 

systems.78,80,81 To address the third issue, investigators have 

developed newer versions of microdystrophins that do not 
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carry hinges 2 and 3. An example is the ∆R2–15/∆R18–23/∆C 

microgene (Figure 1).

Although local intramuscular gene delivery is important for 

proof of principle, it cannot meet the need of treating all affected 

muscles in the body. A cure for DMD requires systemic gene 

transfer. Whole-body delivery was first demonstrated with 

AAV serotype 6 in mdx mice by intravascular injection.82 

Subsequently, it was reported that several other AAV serotypes 

(such as AAV-8 and AAV-9) also mediate robust body-wide 

gene transfer.83–87 Successful systemic dual AAV vector 

transduction was also achieved.80,88–90 With these great tools in 

hand, it did not take long to prove that we can effectively treat 
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Kyphosis in
23-m-old mdx

kyphosis in
23-m-old mdx

3-m-old m-dko
and mdx

Normal

GRMD

Normal GRMD

80 µm

m-dko

mdx

M
as

so
n 

tr
ic

hr
om

e
H

E

A

B C

D
ys

tr
op

hi
n

Figure 2 Mouse and dog models of DMD. A) Representative pictures of an 8-month-old dystrophin-deficient mdx4cv mouse (left panel), a 23-month-old mdx mouse (middle 
two panels), and a 3-month-old myoD/dystrophin double knockout (m-dKO) mouse and a 3-month-old mdx mouse (right panel). Adult dystrophin-null mice do not display 
clinical symptoms (left panel). The middle two panels show body emaciation and mouse in aged dystrophin-null mouse. (Arrow points to kyphosis seen in aged mdx mice. The 
left panel is a full-body view. The right-side panel represents a close view of kyphosis after the skin is removed.) The difference in the genetic background results in different 
fur color in m-dKO (brown) and mdx (black) mice (right panel). Findings from dKO mice may be biased by their mixed genetic background. B) Representative pictures 
of a 2-year-old normal golden retriever (top) and an affected GRMD (bottom) dog. The affected dog shows body and limb muscle atrophy, drooling, and ulnocarpal joints 
(forelimbs) dropped to the ground level. C) Representative muscle immunofluorescence staining and histopathology staining in normal (left panels) and GRMD (right panels) 
dogs. Dystrophin is detected by an antibody (Dys-1) specific for spectrin-like repeats 6–8 (top row). Muscle pathology is revealed by hematoxylin–eosin (HE) staining (middle 
row) and Masson’s trichrome staining (bottom row). HE staining shows inflammatory cell infiltration, central nucleation, and variable myofiber size. Masson’s trichrome 
staining shows fibrosis. Blue color in Masson’s trichrome staining images represents fibrotic tissue.
Abbreviations: DMD, Duchenne muscular dystrophy; GRMD, golden retriever muscular dystrophy.
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a dystrophic mouse with AAV microdystrophin vectors.91,92 

The histopathology was ameliorated, muscle function 

improved, and life span prolonged.

Initial studies with exon skipping were performed with 

2-O-methylated phosphorothioated (2-OMePS) AON. 

These studies showed efficient local restoration of dystrophin 

expression.93,94 More effective exon skipping has been 

achieved with recently developed phosphorodiamidate 

morpholino oligomers (PMOs), peptide-tagged PMO, and 

nonpeptide polymer–tagged PMO.95–99 Collectively, these 

studies suggest that repeated intravascular or intraperitoneal 

AON injection is sufficient to ameliorate muscular dystrophy 

in dystrophin-deficient mice. Additionally, a combination of 

AAV gene transfer and AON-mediated exon skipping may 

yield more persistent dystrophin expression.100 In summary, 

curing a dystrophin-deficient mouse is no longer beyond the 

reach of the current technology.

The status of DMD clinical trials
A total of three DMD gene therapy approaches have entered 

clinical trials. These include full-length dystrophin replace-

ment with a plasmid vector, AON-mediated exon skipping, 

and AAV-mediated microgene therapy.

The first DMD gene therapy clinical trial was performed 

with a plasmid vector via direct muscle injection.101,102 Three 

17- to 21-year-old DMD patients and six 30- to 50-year-old 

Becker muscular dystrophy (a mild form of DMD) patients 

received 200–1200 µg dystrophin plasmid in the extensor 

radialis muscle.102 This phase I study showed low and vari-

able expression at 21 days after injection.103,104 The efficiency 

is clearly below the therapeutic threshold.102 Unless there is 

a revolutionary breakthrough in the transduction efficiency, 

it seems unlikely the DMD patients will benefit from this 

seemingly simple and straightforward gene transfer technol-

ogy in the near future.

There is no doubt that exon-skipping trials have yielded 

unprecedented success in terms of restoring dystrophin 

expression.105,106 Two trials have been reported. Both trials 

aimed at restoring the open-reading frame by skipping exon 

51. Four 8- to 16-year-old DMD patients received 800 µg 

(in a total volume of 800 µL) of 2-OMePS AON along a 

1.5-cm long line in the tibialis anterior muscle.106 Biopsy 

at day 28  showed 64%–97% of dystrophin-positive fibers 

at the intensity of 17%–35% of control. In another trial, 

two DMD patients (13- and 16-year-old) received 90  µg 

and five DMD patients (10 to 15 years old) received 900 µg 

(all in the volume of 900 µL/patient) of PMO AON in the 

extensor digitorum brevis muscle.105 Minimal expression was 

detected at the low dose. However, significant dystrophin 

expression was detected in the high-dose group between 21 

and 28 days. Myofibers in the range of 44%–79% showed 

increased dystrophin expression at the intensity of 22%–32% 

of healthy muscle. No adverse response was detected in either 

trial. Currently, both trials have moved to repeated systemic 

administration.25

Although the results of these initial exon-skipping trials 

are highly promising, we should be cautious. Dystrophin con-

tains four domains, including the N-terminal, rod, cysteine-

rich (CR), and the C-terminal domain (Figure 1). The rod 

domain can be further divided into 24 spectrin-like repeats 

and four hinges. The N-terminal domain and a specific region 

of the rod domain (repeats 11–17) provide two independent 

binding sites for the cytoskeleton. The CR domain mediates 

connection to the extracellular matrix. These domains are 

essential for dystrophin function. A patient with mutations 

in the CR domain is unlikely to benefit from a treatment 

that removes the CR domain. By definition, exon skipping 

only produces an internally truncated, but not necessarily 

an optimized protein.74 It is quite clear that the function 

of the dystrophin protein is more complex than previously 

thought.107 For example, exons 42–45 encode R16–17, 

the nNOS-binding domain.69 Skipping these exons may 

compromise nNOS anchoring. As a matter of fact, many 

patients who carry in-frame deletion in this region are still 

afflicted by the disease.16,108–111 Perhaps, the biggest challenge 

for exon skipping is the need to design the patient-specific 

AON. Due to the difference in the mutation location, one 

has to use individualized AON to skip specific exon(s) in 

order to restore the open reading frame. The AON tailored 

to one type of mutation in one patient may not be applicable 

to another mutation in a different patient. Since every AON 

has its unique composition, it will be a challenge for the 

regulatory authority to approve all AONs based on the 

success of a specific AON.112

The highly anticipated AAV microgene trial has some 

interesting revelations.113 Six DMD boys received 0.2 to 

1  ×  10e11 viral genome particles/kg body weight of an 

AAV serotype 2.5 ∆R3–19/∆R20–21/∆C microdystrophin 

vector in their biceps (Figure 1). The ubiquitous cytomega-

lovirus promoter was used to control microgene expression. 

Previous studies with similar vectors have yielded a great 

success in the mouse model.60 Unexpectedly, biopsy at 42 and 

90 days showed essentially no microdystrophin expression 

despite detection of the AAV genome. Further investigation 

revealed a potential T-cell immune response to the dystrophin 

epitopes that were either presented or not presented in the 
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AAV vector.113 This result was totally unpredicted by the 

mouse studies.

DMD dogs, a bridge between  
mice and humans
A model that better resembles human patients may bridge the 

gap between mice and humans. In this regard, a dystrophin-

deficient dog represents an ideal intermediate model. Unlike 

mice, dogs have a body size similar to that of affected boys. 

More importantly, it has been shown that the absence of 

dystrophin indeed causes severe muscular dystrophy in dogs 

(reviewed in various studies114–118). The affected pups are 

stunted and weaker. This soon progresses into dysphagia, 

fatigue, abnormal gait, joint contracture, severe muscle wast-

ing, and premature death (Figure 2). Recent studies suggest 

that the phenotypic differences in mice, dogs, and humans 

may be rooted in the difference of cell surface sialic acids.48 

Dogs and humans share similar glycol modification, but mice 

have a different type of glycol modification.48,119 In summary, 

dystrophin-deficient dogs are genetically (in terms of mutated 

dystrophin gene) and phenotypically (in terms of clinical 

manifestation) similar to human patients. They represent 

superior models for DMD research.

Duchenne-like muscular dystrophy has been reported in 

many different dog breeds (Table 1).120–138 However, few have 

been characterized. Currently, experimental dog colonies 

have only been established in Beagle, golden retriever mus-

cular dystrophy (GRMD), and Corgi models. The GRMD 

model is the best studied (Figure 2).126,127 Beagle and GRMD 

models share the same mutation.120 In these dogs, an A-to-G 

transition near the end of intron 6 disrupts the normal splic-

ing acceptor signal. Exon 7 is lost in the resulting transcript. 

Jumping from exon 6 to exon 8 introduces frameshift muta-

tion and a premature stop codon.137,138 Mutations in several 

other canine DMD models have also been identified. In the 

case of German short-haired pointer, a 2.7-mb deletion in 

the X chromosome removes the entire dystrophin gene.125 In 

the case of Cavalier King Charles spaniels, a G-to-T transver-

sion at the beginning of intron 50 results in exon 50 deletion 

and subsequent frameshift and premature termination.124 

Smith et al have recently reported a Corgi DMD model.139 

In this model, insertion of a repetitive element in intron 13 

aborts dystrophin translation.139

Plasmid injection, exon-skipping, and AAV microgene 

therapies have all been tested in the canine model. So far, 

all the reported studies were performed in either GRMD or 

Beagle dystrophic dogs. The result of plasmid injection has 

been briefly mentioned in several articles, but a comprehen-

sive report is lacking. It was suggested that plasmid injection 

efficiency was very poor. In general, ,1% myofibers were 

Table 1 Dystrophin-deficient dogs

Breed Mutation Comment References

Beagle Intron 6 point mutation  
(same as in GRMD)

Colony established.  
Exon skipping tested

120,121

Belgian Groenendaeler shepherds Unknown 122
Brittany spaniels Unknown 123
Cavalier King Charles spaniels Intron 50 point mutation Exon skipping tested in cultured myoblasts 124
Corgi Repetitive element insertion  

in intron 13
Colony established, AAV microgene ongoing 139

German short-haired pointer Unknown 125
Golden retriever (GRMD) Intron 6 point mutation Colony established in several places.  

Plasmid, exon skipping, and AAV microgene tested
121,126,127

Grand Basset Griffon Vendéen Unknown 128
Irish terriers Unknown 129
Japanese spitz Unknown 130
Labrador retrievera Unknown 131
Labrador retrievera Repetitive element insertion  

in intron
166

Miniature schnauzer Unknown 132
Old English sheepdog Unknown 133
Rat terrier Unknown 134
Rottweiler Point mutation in exon 52 167
Samoyed Unknown 135
Weimaraner Unknown 136

Note: aIt is not clear whether the two Labrador retrievers share the same mutation.
Abbreviations: GRMD, golden retriever muscular dystrophy; AAV, adeno-associated virus.
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transduced.102,104,140,141 Exon skipping was initially tested in 

cultured GRMD muscle cells in vitro.142 However, recent 

studies suggest that such an in vitro assay cannot faithfully 

predict the in vivo outcome.143,144 Instead of a single AON, it 

appears that a cocktail of several different AONs is needed 

to achieve efficient skipping in the Beagle dystrophy dogs.144 

AAV microgene therapy has been tested in adult GRMD dogs 

by local injection and in newborn GRMD dogs by systemic 

injection.145–148 Transient immune suppression is required 

to achieve persistent expression following direct muscle 

injection in adult dystrophic dogs.147 Intravascular delivery of 

AAV serotype-9 ∆R3–19/∆R20–21/∆C microdystrophin (this 

microgene contains hinge 3) vector resulted in widespread 

expression in newborn dogs145,146 (Figure 1). Paradoxically, 

this therapy did not lead to expected disease amelioration. 

In contrast, the treated dogs showed growth delay, pelvic limb 

muscle atrophy, and contracture.146 The exact reason behind 

this peculiar finding is not clear. However, a clinical study 

suggests that in-frame deletion of hinge 3 is associated with a 

milder disease.74 From this point, a microgene without hinge 3 

may represent a better option. Collectively, the preliminary 

results of the canine studies have probably revealed a more 

realistic picture of the challenges facing DMD gene therapy. 

Yes, we can now cure a dystrophic mouse. However, we are 

still far from curing a DMD boy.

To-do list in the canine model
How can we fill the gap between mice and humans? Con-

sidering the limitations of the murine models and also 

considering the genetic and clinical similarities between 

dystrophic dogs and DMD patients, a logical next step would 

be to test DMD gene therapy in the dog model. Our limited 

experience in dystrophic dogs has already offered critical 

insight. The low efficiency of plasmid therapy was confirmed 

in human trials.104 The canine studies also raised the need for 

applying transient immune suppression in AAV-mediated 

delivery.145,147,148

Unfortunately, there are more limitations to the canine 

studies than the murine studies. The cost of housing, breed-

ing, and raising dystrophic dogs greatly exceeds that of 

dystrophic mice. A specialized team consisting of veterinary 

doctors of different disciplines, experienced technicians, and 

basic scientists are needed to maintain a dystrophic dog col-

ony for translational research.149 Another critical issue is the 

experimental scale. Unlike mice, dogs only go in heat twice a 

year, and dystrophic dogs are usually not suitable for natural 

breeding. This significantly limits the number of affected dogs 

one can obtain for experiments. Considering the pronounced 

variations of disease progression among individual dogs 

(Fine D, Shin J-H, Duan D. Unpublished data),150,151 great 

caution should be taken in interpreting the data from a few 

dogs.152 Lack of canine-specific reagents constitutes another 

barrier. More than 100 epitope-specific dystrophin antibod-

ies have been developed (see http://glennmorris.org.uk/

monopubs.htm).153 However few have been characterized for 

canine muscle applications (Figure 3). Perhaps, the most con-

straining hurdle is the lack of rigorous physiological param-

eters to evaluate the therapeutic outcome in dogs. Standard 

protocols are available to diagnose dystrophin gene mutation 

and to evaluate dystrophin expression at the mRNA and pro-

tein levels. A wide array of in vitro and in vivo physiological 

assays has also been established to monitor muscle strength 

changes in mice.154,155 These include force measurement in 

a single, intact muscle, such as in vitro assay in the extensor 

digitorum longus muscle and in situ assay in the tibialis 

anterior muscle.66,70,156 Other assays include forelimb or hind 
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Figure 3 Detection of canine dystrophin with monoclonal antibodies. Monoclonal 
dystrophin antibodies were used to detect dystrophin expression in a normal dog 
skeletal muscle and the heart. Representative immunostaining photomicrographs 
are shown for antibodies Manex1 A, Manex50, and Mandra1. Manex1A recognizes 
an epitope encoded by exon 1 (N-terminal domain). Interestingly, it only reacts 
with dystrophin in dog skeletal muscle. Manex50 maps to an epitope encoded by 
exon 50 (rod domain). This antibody can detect dog dystrophin in both skeletal and 
cardiac muscles. Mandra1 is supposed to react with an epitope encoded by exon 70 
(C-terminal domain). However, it fails to reveal canine dystrophin in either skeletal 
muscle or the heart.
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limb grip strength and treadmill exercise. However, similar 

assays are either not developed or the baseline values are not 

available for dystrophic and normal control dogs. Further, 

clinical relevance and reliability remain to be validated.

There are many unanswered questions. With limited 

resources, how can we take maximal advantage of the canine 

model? To prioritize our effort, it is important to point out 

that the core of current DMD gene therapies (such as exon-

skipping therapy and AAV microgene therapy) is based on 

minimized dystrophin genes. Yet the reading frame theory 

does not always hold true for every single patient. Severe 

cases have been reported in patients harboring an in-frame 

deletion (reviewed in Yokota et al157). The gene size is par-

ticularly relevant to the microgene approach. All the mildly 

affected patients reported so far carry at least 50% of the 

dystrophin coding sequence.16,17,19–22,158,159 However, none 

of the microgenes contain more than 40% of the coding 

sequence. A patient who carried a fairly large rod-domain 

in-frame deletion actually developed severe DMD.160 The size 

of the truncated dystrophin in this severely affected patient 

is ∼160 kDa, a size similar to that of microdystrophins.160 

Although it is possible that a rationally designed microgene 

may be functionally superior, this clinical report indeed raises 

the importance of rigorously testing the synthetic microgenes 

prior to human trials.

Although individual investigator-initiated studies should 

be encouraged, focused studies in a few carefully weighed 

experimental therapies could be more productive for the entire 

field. In this regard, a platform is needed to convincingly test 

the therapeutic efficacy in a single, intact dog muscle at the 

molecular and physiological levels. Such an approach may lead 

to some immediate benefits in terms of improving the quality 

of life. It will also lay the foundation for whole-body therapy. 

On the other hand, we should continue our effort to expand the 

available colonies for statistically meaningful large sample-size 

studies. Further characterization of the existing dystrophic dog 

models and the development of new canine DMD models are 

also important measures for preclinical investigations.

What else?
Our current effort is mainly focused on skeletal muscle 

disease. However, we cannot and should not ignore other 

aspects of DMD. Although DMD is often referred to as 

a muscle disease, it actually affects multiple organ sys-

tems. Cardiac complications and central nerve system 

involvement are also highly relevant to the health of 

DMD patients.161,162 A therapy for skeletal muscle may 

not effectively treat other complications.163 Recent studies 

suggest that very old female mdx mice may model dilated 

cardiomyopathy in DMD patients.84,164 However, none of 

the current gene therapy strategies have been evaluated in 

this model. Reports on the cardiac changes of dystrophin-

deficient dogs are rare. Age-matched electrocardiogram 

and echocardiography examination between normal and 

affected dogs may provide a valuable baseline for cardiac 

outcome measurement.

Most current studies are aimed at restoring dystrophin 

expression (yes, this is still on the very top of our list). The 

rapidly expanding library of the disease-modifying genes 

may also offer new opportunities. Considering the immense 

variance in clinical manifestations among certain patients 

who carry the same gene mutation,165 investigation in disease-

modifying genes may yield novel alternative gene therapies 

to treat DMD.

Perspective
Tremendous progress has been achieved over the last two 

decades in developing novel genetic therapies for treating 

DMD. Our success in treating dystrophic mice suggests that 

gene therapy may be a successful modality. Clinical trials have 

been initiated but they have yet to produce convincing benefit 

in DMD patients. Dystrophic dogs represent an important 

translational bridge between mice and humans. Unfortunately, 

we know much less about dystrophic dogs than we do about 

dystrophin-deficient mice and DMD patients. There is an 

urgent need to expand our investigations in the canine model. 

This investment will allow us to perfect gene therapy protocols 

and minimize unnecessary detours in human trials. To make 

this emphasis shift requires commitment and support from the 

entire DMD community, including the researchers, funding 

agencies, and patients and their families and friends.
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