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Background: Cerebral small vessel disease lacks specific clinical manifestations, and extraction of valuable features from multimodal 
images is expected to improve its diagnostic accuracy. In this study, we used deep learning techniques to segment cerebral small vessel 
disease imaging markers in multimodal magnetic resonance images and analyze them with clinical risk factors.
Methods and results: We recruited 211 lacunar stroke patients and 83 control patients. The patients’ cerebral small vessel disease 
markers were automatically segmented using a V-shaped bottleneck network, and the number and volume were calculated after manual 
correction. The segmentation results of the V-shaped bottleneck network for white matter hyperintensity and recent small subcortical 
infarction were in high agreement with the ground truth (DSC>0.90). In small lesion segmentation, cerebral microbleed (average 
recall=0.778; average precision=0.758) and perivascular spaces (average recall=0.953; average precision=0.923) were superior to 
lacunar infarct (average recall=0.339; average precision=0.432) in recall and precision. Binary logistic regression analysis showed that 
age, systolic blood pressure, and total cerebral small vessel disease load score were independent risk factors for lacunar stroke 
(P<0.05). Ordered logistic regression analysis showed age was positively correlated with cerebral small vessel disease load score and 
total cholesterol was negatively correlated with cerebral small vessel disease score (P<0.05).
Conclusion: Lacunar stroke patients exhibited higher cerebral small vessel disease imaging markers, and age, systolic blood pressure, 
and total cerebral small vessel disease score were independent risk factors for lacunar stroke patients. V-shaped bottleneck network 
segmentation network based on multimodal deep learning can segment and quantify various cerebral small vessel disease lesions to 
some extent.
Keywords: lacunar stroke, cerebral small vessel disease, imaging markers, deep learning, quantification, image segmentation, clinical 
risk factors

Introduction
Cerebral small vessel disease (CSVD) is a neurological disorder that commonly affects the middle-aged and elderly population, 
which will cause abnormalities visible on brain imaging. Patients with CSVD are at a higher risk of experiencing stroke and, to 
some extent, cognitive impairment and dementia.1 Therefore, early diagnosis and treatment of CSVD are crucial.

Magnetic resonance imaging (MRI) scans are a primary diagnostic tool for detecting CSVD. Compared to computed 
tomography (CT) scans, MRI scans offer greater sensitivity, and many imaging features can only be detected through MRI.2 

Notably, there are multiple radiological markers for CSVD, including white matter hyperintensities (WMH), recent small 
subcortical infarcts (RSSI), lacunar infarcts (LI), enlarged perivascular spaces (EPVS), and cerebral microbleeds (CMB).3 
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Different imaging markers rely on different MRI sequences for detection. How to achieve the detection and quantification of 
multiple imaging markers based on multi-sequence MRI is an urgent challenge.

However, few studies have explored the relationship between clinical risk factors and each CSVD imaging marker 
through quantitative segmentation, automated calculation of the total CSVD load score, and extraction of CSVD imaging 
markers. This situation is attributed to the significant challenges in accurately diagnosing CSVD: (1) a high rate of 
leakage, particularly for small lesions like PVS; (2) a substantial workload requiring comprehensive assessment using 
different MRI sequences; and (3) a lack of quantitative assessment criteria, with clinical diagnosis relying mainly on 
subjective assessments by physicians, resulting in low inter- and intra-observer consistency. Hence, there is an urgent 
need for a rapid, accurate, and reproducible diagnostic method that can quantify CSVD.

Deep learning technology has shown outstanding performance in intelligent assisted diagnosis of cerebrovascular diseases 
in recent years.4 It can identify lesion locations using detection networks, accurately segment regions of interest (ROIs) using 
segmentation networks, and perform volume quantification. Additionally, it can score and classify lesion severity using 
classification networks.5 This paper focuses on deep learning detection using a 2D convolutional neural network (CNN), 
called a V-shaped bottleneck network (VB-Net) to achieve precise segmentation of CSVD biomarkers in different MRI 
sequences, calculate corresponding load scores, and perform statistical analysis in combination with clinical risk factors that 
may contribute to CSVD, with the hope that this study will enhance the ability to diagnose CSVD in clinical settings.

Methods
Inclusion and Exclusion Criteria
The clinical data of hospitalized patients at Hangzhou First People’s Hospital from January 2014 to January 2021 were 
collected, including T1-weighted magnetic resonance imaging (T1WI), T2-weighted magnetic resonance imaging (T2WI), 
T2-fluid attenuation inversion recovery (T2-FLAIR), susceptibility-weighted imaging (SWI), and diffusion-weighted imaging 
(DWI). Patients diagnosed with lacunar infarct were selected as the case group; Patients in the non-lacunar cerebral infarction 
group (with no imaging abnormalities) served as the control group. After excluding patients with incomplete MRI data, 294 
patients finally met the inclusion criteria, including 211 lacunar stroke patients and 83 control patients. The inclusion criteria 
for this study were as follows: (1) Age > 18 years; (2) Patients diagnosed with lacunar infarction through clinical and imaging 
examinations after the review; (3) Presence of symptomatic microvascular disease on cranial MRI, including WMH, RSSI, LI, 
PVS, and CMB; (4) Availability of complete clinical data. Exclusion criteria were as follows: (1) Patients who did not meet the 
criteria for MRI examination; (2) Patients with severe liver and kidney problems; (3) Pregnant patients; (4) Patients with non- 
vascular dementia, Parkinson’s disease, or other neurodegenerative diseases. All patients underwent appropriate clinical and 
biochemical examinations along with MRI scans.

Clinical Information Collection
Clinical data, including sex, age, body mass index (BMI), smoking and alcohol consumption, and biochemical parameters, 
were collected for each patient. Blood pressure was measured using a mercury sphygmomanometer, and hypertension was 
defined as systolic blood pressure (SBP) ≥ 140 mm Hg or diastolic blood pressure (DBP) ≥ 90 mm Hg, or a history of 
hypertension and use of antihypertensive drugs. Diabetes was defined as fasting blood glucose ≥ 7.0 mmol/L or a history of 
diabetes. Routine biochemical tests were conducted to measure urine acid (UA), total cholesterol (TC), triglycerides (TG), 
high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), homocysteine (HCY), apolipoprotein 
A-1 (ApoA-1), and apolipoprotein B (Apo B) levels.

MRI Examination
The MRI examinations included T1WI, T2WI, T2-FLAIR, DWI, and SWI, each of which reflects specific tissue features. 
All patients in this study were examined using a GE MR Model 750 3.0 T or 1.5 T imaging system. The scan sequences 
included: T1-weighted images with echo time (TE) of 25–30 ms and repetition time (TR) of 1750–1800 ms; T2-weighted 
images with TE of 90–95 ms and TR of 5170–5175 ms; T2 FLAIR with TE of 145–150 ms and TR of 8400–8450 ms; 
layer thickness of 6–7 mm, layer spacing of 6–7 mm; matrix of 512 × 512, and field of view (FOV) of 240.00 mm. Two 
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experienced imaging physicians reviewed the MRI findings, and any discrepancies in image interpretation were resolved 
through discussion to reach a consensus diagnosis.

Lesion Measurement Method
Segmentation Process
The segmentation procedure was executed on the uAI research portal (uRP), which has integrated a great deal of 
segmentation models for various ROIs.6 In this study, a two-dimensional (2D) V-shaped bottleneck network (VB-Net) 
was invoked for the segmentation of all CSVD imaging markers. It is worth noting that this VB-Net has been used for the 
segmentation of WMH with a dice similarity coefficient (DSC) of 0.878 in our published paper.7 In this study, we 
evaluated the segmentation performance of the VB-Net for several CSVD tasks (ie, WMH, RSSI, LI, PVS, and CMB) 
and compared it to the manual contouring results from two experienced radiologists. Finally, the two experienced 
radiologists manually checked and corrected the automated segmentation results for the presence of lesions in the brain 
and output quantitative metrics (eg, location, number, volume).

To be specific, the general 2D VB-Net included an efficient encoder-decoder framework for feature embedding, residual 
connections for information flow, as well as bottleneck layers for model compression. More details can be found in our 
previously published article.7 Notably, each CSVD marker segmentation used the corresponding optimal MRI sequence to 
achieve the most accurate quantification. As a result, the inputs to VB-Net varied with the CSVD markers, in which the 
segmentation of WMH, RSSI, LI, PVS, and CMB depended on T2-FLAIR, DWI, T1WI, T2WI, and SWI, respectively 
(Figure 1). It is worth noting that, WMH lesions could be further categorized as juxtaventricular white matter hyperintensities 
(JVWMH), periventricular white matter hyperintensities (PVWMH), deep white matter hyperintensities (DWMH), and 
juxtacortical white matter hyperintensities (JCWMH).8

The segmentation performance of VB-Net on five tasks (ie, WMH, RSSI, LI, PVS, and CMB) was evaluated by calculating 
three metrics including DSC, recall, and precision. The manual contouring results of the above CSVD markers by two 
experienced radiologists (ie, Fenyang Chen for Reader1 and Zhefan Shen for Reader2) were considered as ground truth.
where the TP represented true positive, FP represented false positive, and FN represented false negative, the higher the 
metrics, the better the segmentation results. For smaller lesions such as LI, PVS, and CMB, we focused on precision and 

Figure 1 A general 2D VB-Net used for segmenting multiple cerebral small vessel disease (CSVD) markers. The VB-Net included an encoder-decoder framework for 
feature embedding, residual connections for information flow, and bottleneck layers for model compression. The VB-Net automatically segmented five CSVD markers on 
the corresponding MRI sequence. Specifically, T2-fluid attenuation inversion recovery (T2-FLAIR), diffusion-weighted imaging (DWI), T1-weighted magnetic resonance 
imaging (T1WI), T2-weighted magnetic resonance imaging (T2WI), and susceptibility-weighted imaging (SWI) were used to segment the white matter hyperintensity (WMH), 
recent small subcortical brain infarction (RSSI), lacunar infarction (LI), perivascular spaces (PVS), and cerebral microbleeds (CMB), respectively.
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recall to assess FN and FP. The automated segmentation results were then manually checked and corrected by two 
radiologists, and a series of quantitative measures were outputted, including the number of lesions and total volume.

Contouring Criteria
Two radiologists manually corrected the automated segmentation results following the contouring criteria (Figure 2).

WMH. Brain WMH is defined as a high signal on T2WI and T2 FLAIR sequences and an equal or low signal on 
T1WI sequences.9

RSSI. It manifests as a recent small infarct located in the distribution of the penetrating artery. It exhibits a low signal 
on T1WI sequences, a high signal on T2WI and T2 FLAIR sequences, and has coronal and sagittal diameters of greater 
than 20 mm, with an axial maximum diameter of less than 20 mm.

LI. Among the various subtypes of cerebral infarction, LI holds a distinctive position within the realm of ischemic 
stroke, accounting for approximately 25%.10 These foci exhibit small sizes, ranging from 3–15 mm in diameter. Lesions 
smaller than 3 mm may indicate recent subcortical infarctions and are predominantly located deep in the brain, including 
the basal ganglia region, thalamus, and brainstem.

PVS. It manifests as a low signal on T1WI and appears as a high signal shadow on T2WI. It is distributed along the 
course of the penetrating arteries, resembling the signal characteristics of cerebrospinal fluid. PVS is frequently observed 
in the centrum semiovale, basal ganglia, and midbrain. When parallel to the mirror plane, it appears linear, whereas it 
appears punctate when perpendicular to the mirror plane.3 PVS are identified as lesions with diameters less than 2 mm, 
EPVS as lesions with diameters greater than 2 mm, RSSI as lesions with diameters between 15–20 mm, and LI sizes 
ranging from 2–15 mm with increased FLAIR signal at the edge.11

CMB. It’s the lesion characterized by the deposition of iron-containing hemoglobin due to blood leakage from 
severely damaged tiny vessels.3

Figure 2 MRI findings related to small vessel disease illustrate examples (upper) and schematic representations (middle) of MRI features associated with such changes, 
accompanied by a summary of imaging characteristics (lower) specific to individual lesions. Increased signals are represented as ↑; Decreased signals are represented as ↓; 
Isointense signals are represented as ↔. MRI sequences included T2-fluid attenuation inversion recovery (T2-FLAIR), diffusion-weighted imaging (DWI), T1-weighted 
magnetic resonance imaging (T1WI), T2-weighted magnetic resonance imaging (T2WI), and susceptibility-weighted imaging (SWI).

https://doi.org/10.2147/IJGM.S446531                                                                                                                                                                                                                                 

DovePress                                                                                                                                   

International Journal of General Medicine 2024:17 742

Zhang et al                                                                                                                                                            Dovepress

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


CSVD Burden
Previous studies have confirmed a high correlation between the Fazekas scale and WMH volumes in terms of severity, 
assessing the sum of PWMH and DWMH on a scale of 0–6.12,13 To evaluate the severity of the WMH, a regression 
model was developed to generate the Fazekas scores (Figure 3). Specifically, the CNN-based multi-task WMH scoring 
network could provide Fazekas scores for each layer under different tasks (ie, PWMH and DWMH) in the image. By 
inputting the original T2-FLAIR image and WMH segmentation mask image, the network determined the index of the 
image layer corresponding to the maximum score.

The CSVD total load score was generated from the uRP platform, combining metrics related to WMH, LI, EPVS, and 
CMB. The following criteria were scored as 1 point: (1) ≥ 1 LI; (2) DWMH score ≥ 2 points and/or PWMH score of 3 
points in Fazekas score; (3) ≥ 1 deep or subcortical CMB; (4) moderately severe (grade 2 to 4) PVS in the basal ganglia 
region.14 One study included brain atrophy scores in the CSVD total load score.15 However, since brain atrophy is not 
specific to neurodegenerative diseases,1 its analysis was omitted in this article and not included in the CSVD load score.

Statistical Analyses
Statistical analysis was performed using SPSS 25.0 software. Continuous variables were expressed as mean ± standard 
deviation or median and interquartile range. The Kolmogorov–Smirnov test was used to check if the data conforms to 
a normal distribution. The t-test or Mann–Whitney U-test was employed for comparison based on the distribution of the 
data. Categorical variables were presented as percentages and analyzed using the Pearson chi-square test or Fisher exact 
probability method. Binary logistic regression analysis was conducted for variables with P < 0.05 and variables identified 
as influential, such as age, to investigate the relationship between clinical risk factors and each CSVD imaging marker. 
Ordered logistic regression was utilized to assess the relationship between the total CSVD score and each risk factor. 
A multifactorial linear regression model was applied to determine the relationship between each continuous variable 
imaging marker and clinical risk factors. Initially, an unadjusted model was employed, followed by an adjustment for 
potential confounders. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated, with statistical significance 
set at P < 0.05.

Figure 3 The multi-task regression model used for white matter hyperintensity (WMH) scoring. Based on the segmentation results of WMH by VB-Net, the gray-scale 
image and the corresponding mask served as the dual-channel input to the 2D regression network. Then, each slice of the image was transformed into the embedding to 
regress the corresponding WMH score and probability. Finally, the scores and probabilities of periventricular WMH (PWMH) and deep WMH (DWMH) were output by 
selecting the maximum probability. Convs referred to convolutional layers and GAP represented global average pooling.
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Results
Demographic Information
Out of the 294 patients included in the study, 211 (71.77%) were diagnosed with lacunar stroke, while 83 (28.23%) were 
control patients with no imaging abnormalities. The age of all patients was 59.00 (51.00, 67.00) years. In the comparison 
of the lacunar stroke and control groups, age (63.73 ± 9.74 vs 49.00 [40.75, 54.00]) and systolic blood pressure (136 
[124, 151] mm Hg vs 126 ± 16.21 mm Hg) were significantly higher in the lacunar stroke group than in the control group 
(P < 0.001). Other clinical data indicated significantly higher proportions of patients with hypertension (65.88% vs 
21.69%), atherosclerosis (32.70% vs 10.84%), and coronary artery disease (15.64 vs 1.20%) in the lacunar stroke group 
as compared with the control group (P < 0.001). Biochemical parameters, including TC (4.11 [3.44, 4.76] vs 4.45 ± 
0.89), LDL (2.23 [1.73, 2.78] vs 2.58 [2.05, 2.95]), and HCY (11.70 [9.40, 14.30] vs 10.30 [8.60, 11.60]), also showed 
statistically significant differences between the two groups (P < 0.05), with lower levels of TC and LDL observed in the 
lacunar stroke group compared to the control group (Table 1).

Quantification of CSVD Imaging Markers, Total Load Score, and Fazekas Score
Five CSVD imaging markers were automatically segmented by VB-Net based on the corresponding MRI sequences and 
the segmentation performance was compared to the ground truth. As shown in Table 2 and Figure 4a, the manual 
contouring results for the two Readers showed good agreement across the five tasks, with median DSC values exceeding 
0.90. From Figures 4b and c and Table 2, it could be seen that the segmentation results of VB-Net for WMH and RSSI 
were in high agreement with the ground truth (ie, Reader1 and Reader2) in terms of DSC, recall, and precision. The 
segmentation results for small lesions (ie, LI, PVS, and CMB) focused on recall (Figure 4d) and precision (Figure 4e), 
which were described in detail in Table 2. Although VB-Net performs poorly in LI segmentation, it performed well 
overall. Quantitative metrics (eg, number of lesions, total volume) were extracted after manual correction of the 

Table 1 Description of Each Clinical Risk Factor for Patients in the Lacunar Stroke and Control Groups

Variables All (n = 294) Patients (n = 211) Controls (n = 83) t/χ2/Z P values

Sex (Male) 135 (45.91%) 98 (46.45%) 37 (44.57%) 0.08 0.77

Age (years) 59.00 (51.00, 67.00) 63.73 ± 9.74 49.00 (40.75, 54.00) 11.11 < 0.001
BMI (kg/m2) 23.48 (21.27, 25.97) 23.67 (21.48, 25.93) 23.83 ± 3.75 0.77 0.44

Smoking 60 (20.41%) 48 (22.75%) 12 (14.46%) 2.52 0.11

Drinking 48 (16.33%) 37 (17.54%) 11 (13.25%) 0.80 0.37
Hypertension 157 (53.40%) 139 (65.88%) 18 (21.69%) 46.75 < 0.001
SBP (mm Hg) 132.00 (121.00, 147.25) 136.00 (124.00, 151.00) 125.76 ± 16.21 4.56 < 0.001
DBP (mm Hg) 77.00 (71.00, 86.00) 76.50 (70.00, 86.00) 79.28 ± 10.69 1.49 0.14
Diabetes 93 (31.63%) 71 (33.65%) 22 (26.51%) 1.41 0.24

Atherosclerosis 78 (26.53%) 69 (32.70%) 9 (10.84%) 14.60 < 0.001
Coronary disease 34 (11.56%) 33 (15.64%) 1 (1.20%) 12.14 < 0.001
Hyperuricacidemia 23 (7.82%) 18 (8.53%) 5 (6.02%) 0.52 0.47

ApoA-1 (g/l) 1.36 ± 0.20 1.36 ± 0.21 1.36 ± 0.19 0.39 0.70

ApoB (g/l) 0.86 ± 0.20 0.85 ± 0.20 0.89 ± 0.20 1.51 0.13
TC (mmol/l) 4.28 (3.58, 4.91) 4.11 (3.44, 4.76) 4.45 ± 0.89 2.83 < 0.05
LDL (mmol/l) 2.28 (1.81, 2.85) 2.23 (1.73, 2.78) 2.58 (2.05, 2.95) 3.10 < 0.05
HDL (mmol/l) 1.17 (1.00, 1.36) 1.17 (0.97, 1.35) 1.19 (1.00, 1.37) 0.26 0.80
TG (mmol/l) 1.30 (0.91, 1.74) 1.33 (0.95, 1.78) 1.19 (0.90, 1.69) 0.28 0.78

HCY (umol/l) 11.20 (9.10, 13.73) 11.70 (9.40, 14.30) 10.30 (8.60, 11.60) 3.82 < 0.001
UA (umol/l) 298.50 (246.00, 356.25) 300.50 (248.50, 368.50) 300.39 ± 73.10 0.54 0.59

Notes: Bold indicates statistical significance (P < 0.05). For continuous variables that were approximately normally distributed, they were represented 
as mean ± standard deviation and compared using independent samples t-tests (t). For continuous variables with asymmetrical distributions, they were 
represented as median (25th, 75th percentiles) and compared using Mann–Whitney U-tests (Z). Categorical variables were represented as number 
(percentage) and compared using Chi-square tests(χ2). 
Abbreviations: BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; ApoA-1, apolipoprotein A-1; ApoB, apolipoprotein 
B; TC, total cholesterol; LDL, low density lipoprotein; HDL, high density lipoprotein; TG, triglyceride; HCY, homocysteine; UA, uric acid.
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automatic segmentation results. The statistical analysis of all quantitative results (Table 3) revealed significant differences 
(P < 0.001) in all CSVD imaging markers between lacunar infarction patients and controls, except for EPVS. Among all 
patients, 152 cases (51.70%) had a CSVD total load score of ≥ 1. The proportions of Fazekas score (≥ 1), and CSVD total 

Table 2 The Segmentation Performance of VB-Net for CSVD Imaging Biomarkers.

Comparison WMH 
(n = 266)

RSSI 
(n = 44)

LI 
(n = 86)

PVS 
(n = 266)

CMB 
(n = 25)

Reader1 vs Reader2 1.000(0.992, 1.000) 1.000(0.996, 1.000) 0.915(0.794, 1.000) 0.989(0.925, 1.000) 0.969(0.886, 1.000)

AI vs Reader1

● DSC 0.990(0.976, 0.997) 0.995(0.972, 1.000) – – –
● Recall 1.000(0.975, 1.000) 1.000(0.865, 1.000) 0.345(0.254, 0.435) 0.933(0.923, 0.943) 0.785(0.628, 0.941)

● Precision 1.000(0.962, 1.000) 1.000(1.000, 1.000) 0.438(0.334, 0.542) 0.925(0.913, 0.937) 0.756(0.598, 0.913)

AI vs Reader2
● DSC 0.995(0.978, 1.000) 0.996(0.973, 1.000) – – –

● Recall 1.000(1.000, 1.000) 1.000(0.821, 1.000) 0.332(0.243, 0.422) 0.972(0.967, 0.977) 0.771(0.615, 0.927)
● Precision 1.000(0.967, 1.000) 1.000(1.000, 1.000) 0.426(0.323, 0.530) 0.920(0.908, 0.931) 0.759(0.601, 0.916)

Notes: Dice Similarity (DSC) Were Calculated for the Five Tasks Showing High Consistency of Manual Contouring Results Between the Two Readers. All 
Metrics Were Represented with Medians (25th, 75th Percentiles). 
Abbreviations: WMH, white matter hyperintensity; RSSI: recent small subcortical infarction; LI, lacunar infarct; PVS, perivascular spaces; CMB, cerebral 
microbleed.

Figure 4 Segmentation performance of VB-Net for five CSVD imaging markers. (a) Dice similarity coefficients (DSCs) between the manual contouring results of the two 
Readers in five tasks. The numbers annotated in the plot represented the medians. Scatter plots showing the segmentation performance of VB-Net for white matter 
hyperintensity (WMH) (b) and recent small subcortical infarction (RSSI) (c), in which DSC, recall, and precision were calculated from the automated results and manual 
results. Each subgroup was labeled with the median and its interquartile range. Segmentation performance of VB-Net for lacunar infarction (LI), perivascular spaces (PVS), 
and cerebral microbleeds (CMB) were assessed by recall (d) and precision (e). Error bars represented the 95% confidence interval of the mean.
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load score (≥ 1) were higher in the lacunar infarction group than in the control group. These differences in Fazekas 
scores, including DWMH, PVWMH, and CSVD total load scores, were all statistically significant (P < 0.001) (Table 3).

Association of CSVD Total Load Score and Each Imaging Marker with Vascular Risk 
Factors
Univariate logistic regression analysis revealed statistically significant differences (P < 0.05) between the lacunar stroke 
and control groups in terms of age, systolic blood pressure, TC, LDL, HCY, hypertension, coronary artery disease, and 
atherosclerosis (Table 1). According to a multifactorial linear regression model, age exhibited a positive correlation with 
the number of EPVS and the total volume of LI and WMH. In the linear regression analysis of WMH volumes in 
different brain regions, age demonstrated a positive correlation with the volume of WMH in each region, and SBP 
exhibited a positive correlation with the volume of JVWMH and PVWMH (P < 0.05) (Table 4 and Table 5). And binary 
logistic regression analysis identified several independent risk factors for lacunar stroke patients (Table 6). After 
adjusting confounding factors, age, SBP, and CSVD total load score were found to be independent risk factors for 
lacunar stroke. In the ordered logistic regression analysis of CSVD total load score and clinical risk factors, TC exhibited 
statistical significance after adjusting the model to include Apo-1, ApoB, and BMI. Age showed positive correlations 
with CSVD total load score, and TC showed negative correlations with CSVD total load score (P < 0.05) (Table 7).

Table 3 Quantitative Description of Each CSVD Imaging Marker in the Lacunar Stroke and Control 
Groups

Categorical Variable, n (%) All  
(n = 294)

Patients  
(n = 211)

Controls  
(n = 83)

χ2/Z P value

LI score = 1 92 (31.30%) 84 (39.81%) 8 (9.64%) 25.22 < 0.001
EPVS score = 1 14 (4.76%) 11 (5.21%) 0 (0%) 0.336 0.56
WMHs score = 1 94 (31.97%) 94 (44.55%) 0 (0%) 54.36 < 0.001
PVWMHs 6.10 < 0.001

● Score = 0 3 (1.02%) 3 (1.42%) 0 (0%)
● Score = 1 212 (72.11%) 129 (61.14%) 83 (100%)

● Score = 2 38 (12.93%) 38 (18.01%) 0 (0%)
● Score = 3 41 (13.95%) 41 (19.43%) 0 (0%)

DWMHs 7.22 < 0.001
● Score = 0 32 (10.88%) 15 (7.11%) 17 (20.48%)
● Score = 1 169 (57.48%) 103 (48.82%) 66 (79.52%)

● Score = 2 53 (18.03%) 53 (25.12%) 0 (0%)

● Score = 3 40 (13.61%) 40 (18.96%) 0 (0%)
Total WMHs 5.69 < 0.001

● Score = 0 1 (0.34%) 1 (0.47%) 0 (0%)

● Score = 1 226 (76.87%) 143 (67.77%) 83 (100%)
● Score = 2 55 (18.71%) 55 (26.07%) 0 (0%)

● Score = 3 12 (4.08%) 12 (5.69%) 0 (0%)

CMB
● Score = 1 25 (8.50%) 25 (11.85%) 0 (0%) 10.75 < 0.05
● Number 93 (100%) 93 (100%) 0 (0%) 3.27 < 0.05

Total CSVD 8.86 < 0.001
● Score = 0 142 (48.30%) 67 (31.75%) 75 (90.36%)

● Score = 1 96 (32.65%) 88 (41.71%) 8 (9.64%)

● Score = 2 47 (15.99%) 47 (22.27%) 1. (0%)
● Score = 3 8 (2.72%) 8 (3.79%) 1. (0%)

● Score = 4 1 (0.34%) 1 (0.47%) 0 (0%)

Note: Bold indicates statistical significance (P < 0.05). 
Abbreviations: PVWMH, paraventricular white matter hyperintensity; DWMH, deep white matter hyperintensity; EPVS, 
enlarged perivascular spaces; CSVD, cerebral small vessel disease.
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Discussion
Epidemiological surveys have demonstrated independent associations between hypertension, diabetes, age, hyperlipidemia, 
smoking, and alcohol consumption with stroke.16 Yang et al study found that 24-hour daytime and nighttime SBP levels and 
24-hour SBPV were positively associated with CSVD burden.15 Furthermore, brain WMH volume has been observed to 
increase with age.17 Our research results also indirectly confirm the above viewpoint. A recent Mendelian randomized 
observational study has suggested a link between obesity, as indicated by a high BMI, and an elevated risk of CSVD.18 In 
addition, the Apo B/ApoA-1 ratio has increasingly been recognized as a promising biochemical marker for coronary heart 

Table 4 Multifactor Linear Regression Analysis of CSVD Imaging Markers and Clinical Risk Factors. The 
Regression Coefficient is Expressed as β

Variables LI (mm3) EPVS (Number) WMH (mm3) CMB (mm3)

β P values β P values β P values β P values

Age 2.499 0.019 0.081 < 0.001 263.207 < 0.001 0.032 0.932
SBP 1.018 0.136 −0.003 0.823 60.995 0.067 0.465 0.057

TC −8.482 0.748 0.001 0.998 28.668 0.982 4.516 0.633

LDL 2.645 0.936 −0.307 0.602 −736.857 0.646 −13.710 0.244
HCY 0.858 0.624 0.018 0.567 11.824 0.890 −0.323 0.605

Coronary disease 26.810 0.545 −0.342 0.667 −1322.183 0.541 19.761 0.213

Atherosclerosis −16.464 0.609 −0.083 0.886 −111.625 0.943 11.050 0.338

Note: Bold indicates statistical significance (P < 0.05).

Table 5 Multifactor Linear Regression Analysis of Regional WMH and Vascular Risk Factors

Variables JVWMH (mm3) PVWMH (mm3) DWMH (mm3) JCWMH (mm3)

β P values β P values β P values β P values

Age 68.822 <0.001 107.730 < 0.001 63.940 < 0.001 22.715 < 0.001
SBP 17.611 0.006 28.064 0.049 11.205 0.335 4.114 0.284
TC −137.357 0.581 47.245 0.932 89.895 0.842 28.884 0.846

LDL 30.496 0.922 −387.782 0.572 −301.755 0.591 −77.816 0.675

HCY 9.941 0.546 5.248 0.886 −5.337 0.858 1.971 0.841
Coronary disease −432.012 0.301 −237.778 0.797 −560.819 0.458 −91.575 0.714

Atherosclerosis 3.907 0.990 −158.609 0.814 211.143 0.701 −168.066 0.355

Note: Bold indicates statistical significance (P < 0.05). 
Abbreviations: JVWMH, juxtaventricular white matter hyperintensities; PVWMH, periventricular white matter hyperintensities; DWMH, deep 
white matter hyperintensities; JCWMH, juxtacortical white matter hyperintensities.

Table 6 Binary Logistic Regression Analysis of Each Clinical Risk Factor in 
Patients in the Lacunar Stroke and Control Groups

Variables P values β values OR 95% CI

Total CSVD Score < 0.001 2.145 8.541 3.228 22.602

Age < 0.001 0.175 1.192 1.122 1.266
SBP 0.011 0.031 1.031 1.007 1.056

TC 0.481 −0.250 0.779 0.389 1.560

LDL 0.805 0.112 1.119 0.459 2.729
Homocysteine 0.807 0.010 1.010 0.936 1.089

Coronary disease 0.105 −2.034 0.105 0.011 1.533

Atherosclerosis 0.590 −0.305 0.737 0.243 2.238

Note: Bold indicates statistical significance (P < 0.05). 
Abbreviations: OR, odds ratio; CI, confidence interval.
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disease, intracranial atherosclerosis, and stroke.19–21 However, little is known about its relationship with CSVD. Studies have 
suggested that HCY may increase the risk of recurrent primary stroke.22 In this study, patients with higher TC levels actually 
had lower CSVD total load scores, cohort studies have also demonstrated that patients with hypercholesterolemia or 
hyperlipidemia have lower WMH severity at the time of stroke, supporting the possibility that hyperlipidemia may have 
a relatively protective role in CSVD disease.23 While this paper did not examine cognitive impairment, one study found an 
association between asymptomatic lacunar infarction, perivascular gap enlargement, and cognitive decline.24,25 WMH has 
been associated with an increased risk of long-term cognitive impairment and Alzheimer’s disease.26 Additionally, approxi
mately one-third of stroke patients suffer from depression,27 and CSVD load has been linked to post-stroke depression.28 RSSI 
with severe total CSVD burden at baseline have a greater potential to become cavitated.29 Furthermore, evidence suggests that 
sex may influence lipid levels and CSVD, with HDL and ApoA-1 levels negatively correlated with PWMH and DWMH in 
women,30 and the probability of stroke is higher in women than in men.31

In this study, we employed the MR CSVD intelligent analysis system, which incorporates various deep learning detection and 
segmentation algorithms, to automatically perform lesion segmentation and index quantification based on multi-modal MR 
images, including WMH, RSSI, LI, PVS, and CMB. This system enables precise lesion localization, allowing clinicians to 
visualize and digitally analyze the lesions for accurate diagnosis. Compared to traditional manual outlining, this deep learning- 
based automatic segmentation algorithm offers higher efficiency, consistency, and repeatability, particularly when dealing with 
large-scale datasets. It helps overcome operator bias associated with traditional manual outlining and film reading. Previous 
studies have also confirmed the value of deep learning detection, segmentation, and classification networks in assisting CSVD 
diagnosis, although most of them have focused on specific scenarios. For instance, Ghafoorian et al developed a multiscale 
location-aware framework for the automatic identification of vascular-derived lacunae using 3D CNN. The model achieved 
a sensitivity of 97.4% and a false positive rate of 0.13% in a single layer of images, demonstrating detection performance 
comparable to that of four trained physicians.32 Duan et al achieved automatic segmentation of RSSI based on a CNN network, 
with a segmentation performance (DSC = 0.728) surpassing that of four low-ranking (< 10 years of experience) physicians’ 
manual outlining results (DSC = 0.615, 0.690, 0.717, and 0.747, respectively). Not only limited to cerebrovascular diseases, but 
deep learning has also shown excellent performance in segmenting brain malignant tumors. Rasheed et al33 used image 
enhancement and CNNs to accurately segment common types of brain tumors (recall = 0.979, area under the curve 
[AUC] = 0.978). The automated segmentation approach also outperformed the clinicians’ manual outlining in terms of accuracy 
and significantly improved segmentation efficiency, requiring only 1% of the time needed for manual outlining.34

In comparison to previous applications of deep learning in CSVD, the MR brain small vessel disease intelligent analysis 
system developed in this study can detect, segment, quantify, and score various subtypes of CSVD. It can be applied to 

Table 7 Ordinal Logistic Regression Analysis of Clinical Risk Factors and CSVD Scores

Variables β values P values 95% CI

Threshold CSVD score = 0 7.428 < 0.001 4.148 10.707
CSVD score = 1 9.743 < 0.001 6.358 13.128

CSVD score = 2 11.524 < 0.001 8.041 15.008

CSVD score = 3 13.515 < 0.001 9.599 17.430
Variable Age 0.090 < 0.001 0.062 0.118

SBP 0.010 0.154 −0.004 0.024

TC −0.653 0.035 −1.258 −0.047
LDL 0.223 0.569 −0.545 0.991

HCY 0.015 0.406 −0.020 0.050
ApoA-1 1.307 0.129 −0.381 2.995

ApoB 0.341 0.831 −2.800 3.482

BMI 0.012 0.144 −0.004 0.029
Coronary disease 0.365 0.418 −0.518 1.248

Atherosclerosis 0.137 0.682 −0.518 0.791

Note: Bold indicates statistical significance (P < 0.05).
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different MR sequences for different subtypes, including (1) assessment of WMH lesion extent, volume quantification, and 
calculation of Fazekas score; (2) RSSI; (3) luminal foci; and (4) automatic detection of EPVS, precise localization within the 
brain, and quantitative lesion analysis (including number, total volume). Consequently, its application scenarios are more 
extensive, allowing for a comprehensive assessment of CSVD status at different levels and calculation of the total CSVD load 
score to facilitate accurate diagnosis by clinicians. In future research, we plan to increase the sample size and further analyze 
the correlation between CSVD imaging markers and clinical risk factors.

Conclusion
Age, SBP, and CSVD total load score emerged as independent risk factors for lacunar stroke patients, with older age 
associated with a higher risk of EPVS, LI, and cerebral WMH. The application of multi-modal deep learning-based MR 
image processing enabled the segmentation and quantification of various CSVD lesions. The lacunar stroke group 
demonstrated higher CSVD imaging indexes when assessed comprehensively through different levels of CSVD imaging 
marker status, calculation of the CSVD total load score, and digitization of disease severity. The CSVD total load score 
quantified by the VB-Net algorithm provides an assessment of stroke severity to a certain extent and may provide 
guidance for developing stroke prevention strategies.
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