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Abstract: Hepatocellular carcinoma (HCC) is one of the male-dominant liver diseases with 

poor prognosis, although treatments for HCC have been progressing in the past decades. 

Androgen receptor (AR) is a member of the nuclear receptor superfamily. Previous studies 

reported that AR was expressed in human HCC and non-HCC tissues. AR is activated both 

ligand-dependently and ligand-independently. The latter is associated with a mitogen-activated 

protein kinase–, v-akt murine thymoma viral oncogene homolog 1–, or signal-transducer and 

activator of transcription–signaling pathway, which has been implicated in the development of 

HCC. It has been reported that more than 200 RNA expression levels are altered by androgen 

treatment. In the liver, androgen-responsive genes are cytochrome P450s, transforming growth 

factor β, vascular endothelial growth factor, and glucose-regulated protein 78 kDa, which are also 

associated with human hepatocarcinogenesis. Recent studies also revealed that AR plays a role 

in cell migration and metastasis. It is possible that cross-talk among AR-signaling, endoplasmic 

reticulum stress, and innate immune response is important for human hepatocarcinogenesis and 

HCC development. This review shows that AR could play a potential role in human HCC and 

represent one of the important target molecules for the treatment of HCC.

Keywords: vascular endothelial growth factor, angiogenesis, glucose-regulated protein 78 kDa, 

hepatocarcinogenesis, molecular targets

Introduction
Hepatocellular carcinoma (HCC) is one of the male-dominant cancers with poor 

prognosis, although treatments are being developed.1–4 HCC usually occurs after the 

age of 40 years, reaching a peak at approximately 70 years of age.5 Irrespective of 

their etiology, rates of HCC among men are two to four times higher than those among 

women.5 HCC derived from hepatitis B virus (HBV) or hepatitis C virus infection and 

virus-unrelated HCC are male-dominant disorders.6,7 Similar sex difference is also 

observed in mice given a chemical carcinogen, diethylnitrosamine.8

In humans, androgen and estrogen are essential sex steroid hormones involved in 

many cellular processes such as cell metabolism and cell differentiation, as well as 

sex development.9 Both androgen receptor (AR) and estrogen receptor α, for androgen 

and estrogen, respectively, seem to be involved in hepatocellular carcinogenesis.8,10–12 

There have been many reports concerning the expression of AR in HCC and its sur-

rounding liver tissues.13–31 The association between AR and liver diseases is shown 

in Table 1. In this review article, we provide comprehensive insights regarding the 

association between ARs and HCC. We have been expecting that AR would become 

an emerging therapeutic target in HCC.

Jo
ur

na
l o

f H
ep

at
oc

el
lu

la
r 

C
ar

ci
no

m
a 

do
w

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.d
ov

ep
re

ss
.c

om
/

F
or

 p
er

so
na

l u
se

 o
nl

y.

http://www.dovepress.com/permissions.php
http://creativecommons.org/licenses/by-nc/3.0/
http://www.dovepress.com/permissions.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
http://dx.doi.org/10.2147/JHC.S48956
mailto:kanda2t@yahoo.co.jp


Journal of Hepatocellular Carcinoma 2015:2submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

92

Kanda and Yokosuka

ARs and androgen action
Human AR is a member of the nuclear steroid receptor super-

family and AR gene is located on Xq11-12, indicating that 

males have a single copy of the gene.32 AR is a ligand-

activated transcriptional factor with three domains: DNA-

binding domain, C-terminal ligand-binding domain, and 

N-terminal transactivation domain.33 Unliganded AR is 

inactivate and is bound to cytoplasmic chaperones such as 

heat shock protein 90 (Hsp90).34 Testosterone is produced in 

the testes and is converted to dihydrotestosterone. Ligands 

bind to AR and activate AR, inducing conformational change. 

Then, the AR dimerizes and the AR-dimers translocate to 

the nucleus, where AR binds to consensus-binding sequences 

(androgen-responsive elements [AREs]) in the DNA to 

regulate target gene expression.34 Mitogen-activated protein 

kinase (MAPK)/extracellular signal–regulated protein kinase 

signaling increases the stability of AR.34 Interleukin-6 

is sufficient to activate AR in vitro, and steroid receptor 

coactivator-1 has been shown in interleukin-6–dependent 

signaling.35 Steroid receptor coactivator-1 has been shown to 

interact with human AR and to modulate ligand-dependent 

AR transactivation, and it is regulated by phosphorylation 

by MAPK.35 Growth and survival pathways such as MAPK, 

v-akt murine thymoma viral oncogene homolog 1 (AKT), 

and signal-transducer and activator of transcription (STAT) 

signaling are involved in the ligand-independent activation 

of AR of prostate cancer, pancreatic cancer, and HCC.12,35–40 

It is also known that MAPK, AKT, and STAT could acti-

vate AR signaling, and they also are involved in human 

hepatocarcinogenesis.41–48 In several human cancers, AR 

seems to be activated in an androgen-dependent and/or 

androgen-independent manner (Figure 1).

Target genes of AR in the liver
AR and its target genes
Androgens and steroid hormones bind to the AR and, in turn, 

AR associates with genomic AREs (Table 2).49 In LNCap 

prostate cancer cells, more than 200 RNA expression levels 

are altered by androgen treatment.49–51 Androgen plays a 

critical role for the cytoskeleton and extracellular matrix in 

transducing signals for growth, differentiation, and secre-

tion in normal and cancerous prostate cells50,52 Upregulation 

of NF-κB and several DNA repair or stress-response gene 

expressions may be a secondary response to oxidative stress 

rather than a direct response to AR signaling.50,53 Bolton 

et al49 reported that most androgen-responsive genes (ARGs) 

were associated with two or more AREs and that ARGs were 

sometimes themselves linked in gene clusters containing up 

to 13 AREs and 12 ARGs. Primary ARGs seem to produce 

effects on secondary target genes.50

Androgen and the liver
Human liver microsomes and cytochrome P450s (CYP) 

are major sites of metabolism of drugs and hormones. The 

liver could have an impact on the metabolism of androgen 

and the activation of AR or on the metabolism of anti-

androgenic drugs such as flutamide.54,55 It was reported that 

downregulation of AR activity correlates with the severity 

of alcoholic liver injury.56 Hepatocyte nuclear factor-1 and 

CCAAT/enhancer-binding protein are responsible for liver 

specificity of the rat dehydroepiandrosterone sulfotransferase 

gene, which catalyzes sulfonation of androgenic steroids and 

certain aromatic procarcinogens.57

AR and transforming growth  
factor β1 (TGF-β1) in the liver
TGF-β1 expression increases during progression of HCC,58,59 

hepatic cirrhosis,60,61 hepatic damage,62,63 and hepatic 

regeneration.64,65 Yoon et al66 found that the promoter region 

of TGF-β1 includes putative androgen response sequence 

and also in vivo and in vitro evidence of activation of 

TGF-β1 expression by androgen and AR. They reported that 

androgen might regulate hepatocarcinogenesis by increasing 

Table 1 Androgen receptor (AR) and liver diseases from different 
etiologies

Etiology  
of HCC

Roles of AR References

HBV AR-CAG repeats may be associated  
with an increased risk of HCC

116

HBV AR signaling may affect the risk of  
HBV-related HCC among men

117

HBV AR exon 1 CAG repeat length may  
contribute to HCC predisposition  
among women

118,119

HBV TNR of AR gene in male HCC 120
HBV HBx enhances AR-responsive gene  

expression
10,11, 
121–123

HBV AR promotes HBV replication 124–126
HBV CCRK-AR regulates HBV- 

associated HCC
127

HCV HCV core augments AR-signaling 12
NAFLD Association between AR, ER stress,  

and hepatic lipid deposition
86,128–130

Alcohol AR associated with severity of liver  
diseases

56

Abbreviations: HCC, hepatocellular carcinoma; HBV, hepatitis B virus; TNR, 
trinucleotide repeats; HBx, hepatitis B virus X; AR, androgen-responsive; HCV, 
hepatitis C virus; NAFLD, nonalcoholic fatty liver disease; ER, endoplasmic reticulum; 
CCRK, cell cycle–related kinase.
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transcription of TGF-β1 through direct interactions with AR 

and ARE in the TGF-β1 gene.66

AR and cholesterol homeostasis  
in the liver
AR signaling plays a role in the development and progression 

of several liver diseases, including HCC and nonalcoholic 

fatty liver disease. Androgen control of growth hormone 

secretion also induces male-specific genes in the liver.67 AR 

activation results in obesity and altered lipid metabolism 

in orchidectomized mice,68 suggesting that the activation 

of AR might be involved in HCC development in patients 

with nonalcoholic steatohepatitis, although there is also a 

contrary opinion.69 But these studies showed that hepatic 

AR may play a role in the development of insulin resis-

tance and hepatic steatosis.68,69 CYP27A1 is a key enzyme 

in cholesterol homeostasis and vitamin D
3
 metabolism. AR 

could induce CYP27A1, which is a target for the JNK/c-Jun 

pathway. The JNK/c-Jun pathway is thought to be involved 

in AR-mediated upregulation of human CYP27A1.70 Krycer 

and Brown71 showed that liver-X-receptor activity is down-

regulated by AR. The cross-talk between AR and liver-X-

receptor is important for cholesterol homeostasis.

AR and hepatocarcinogenesis
Vascular endothelial growth factor (VEGF) is a target gene of 

AR49 and plays an important role in angiogenesis in the liver.12 

Hepatitis C virus core protein enhances AR signaling, upregu-

lates VEGF expression in hepatocytes, and facilitates angio-

genesis.12 VEGF is one of the key molecules of treatment of 

HCC.72,73 Of interest, female sex was associated with better 

response to sorafenib in patients with unresectable HCC in 

Japan.74 Feng et al reported that cell cycle–related kinase is 

a direct AR transcriptional target and that cell cycle–related 

kinase promotes hepatocarcinogenesis through the upregula-

tion of β-catenin/TCF signaling.75

Ligand-independent AR activation
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Figure 1 Ligand-dependent and ligand-independent androgen receptor (AR)-activation in hepatocytes.
Abbreviations: CYP, cytochrome P450; TGF-β1, transforming growth factor β1; LXR, liver-X-receptor; VEGF, vascular endothelial growth factor; CCRK, cell cycle–related 
kinase; GRP78/Bip, glucose-regulated protein 78 kDa; ARE, androgen-responsive element; ARGs, androgen-responsive genes; MAPK/ERK, mitogen-activated protein kinase/
extracellular signal–regulated protein kinase; STAT, signal-transducer and activator of transcription; AKT, v-akt murine thymoma viral oncogene homolog 1; IL-6, interleukin-6; 
IL-6R, interleukin-6 receptor; GP130, glycoprotein 130; P, phosphorylation.

Table 2 Representative ARGs in the liver

ARGs Function References

CYPs Drug metabolism and alcohol  
metabolism

54–57,70

TGF-β1 HCC development, hepatic fibrosis,  
hepatic damage, and hepatic  
regeneration

66

LXR Cholesterol homeostasis 71
VEGF HCC development and angiogenesis 12,49
CCRK HCC development 75
GRP78/Bip ER stress and HCC development 86,92

Abbreviations: ARG, androgen-responsive gene; CYP, cytochrome P450; ER, 
endoplasmic reticulum; HCC, hepatocellular carcinoma; TGF-β1, transforming 
growth factor β1; LXR, liver-X-receptor; VEGF, vascular endothelial growth factor; 
CCRK, cell cycle–related kinase; GRP78/Bip, glucose-regulated protein 78 kDa.
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AR and aryl hydrocarbon  
(or dioxin) receptor
Both aryl hydrocarbon (or dioxin) receptor and aryl 

hydrocarbon (or dioxin) receptor nuclear translocator are 

known to interact with AR.39,76,77 AR might also be involved 

in hepatocarcinogenesis through aryl hydrocarbon (or dioxin) 

receptor pathways.39 Li et  al78 reported that the vertebrae 

forkhead box A factors and their targets estrogen receptor 

α and AR play an important role in the sex difference of 

HCC. Nuclear receptors including AR and estrogen receptor 

and their related signaling pathways play a role in human 

hepatocarcinogenesis.40

AR and cell migration
Recent studies revealed that AR is involved in cell migration 

and metastasis.79 At present, it is not clear whether AR could 

promote cell migration81–83 or not.80,84,85 Although further 

studies will be needed regarding this point, AR is one of the 

important target molecules for treatment targeting metastasis 

or advanced HCC.

AR and endoplasmic  
reticulum stress
Dihydrotestosterone could induce RNA-dependent protein 

kinase/eukaryotic initiation factor-2α activation in human 

hepatocytes.86 Dai et  al86 reported that RNA-dependent 

protein kinase/eukaryotic initiation factor-2α activation is 

involved in dihydrotestosterone-induced cell cycle arrest 

and that the eukaryotic initiation factor-2α/GADD153 

pathway, a branch of ER stress response, is enhanced. It is 

well known that the ER stress pathway is involved in human 

hepatocarcinogenesis.87 Glucose-regulated protein 78 kDa 

(GRP78/Bip) is one of the androgen response genes in 

human prostate cells as well as in human hepatocytes.39,88–92 

We reported that stronger positive correlations between the 

expressions of AR mRNA and GRP78 mRNA in stage I/II 

HCC samples, compared with stage III/IV HCC samples, 

indicated that AR-controlling GRP78 activation plays a 

role in hepatocarcinogenesis in especially earlier-stage 

HCC patients.92 We also observed that AR overexpression 

increased ER stress–responsive gene expression in human 

hepatocytes and that AR-knockdown led to the down-

regulation of expression of ER stress molecules.92 We also 

confirmed that the double-knockdown of AR and GRP78 

enhanced sorafenib-induced apoptosis in human hepatoma 

cell lines.92 The cross-talk between AR and ER stress response 

might be a potential target in the treatment of HCC.

AR and Toll-like receptor  
signaling pathways
Tissue expression of AR is associated with differential 

immune responsiveness.93 Toll-like receptors (TLRs) are a 

family of transmembrane receptors and play central roles 

in innate immunity. TLR4 recognizes lipopolysaccharide, 

a cell wall component of gram-negative bacteria that 

activate innate immunity.94 Lipopolysaccharide induced 

apoptosis in hepatocytes and reduced the hepatic expres-

sions of ER stress–related proteins. ER stress response is 

important for hepatic cell damage from an innate immune 

response.94

Testosterone downregulated the expression of several 

TLR genes, possibly resulting in the inhibition of the 

immune response.95 MyD88, downstream of TLR4, may 

play a role in limiting prostate tumorigenesis by altering 

tumor-infiltrating immune populations.96 We observed an 

increase of lipopolysaccharide-induced apoptosis (67%) in 

HepG2 stably expressing shAR as compared to that (47%) 

in HepG2 control cells.92 AR and ER stress response may be 

involved in innate immune response of hepatocytes.

AR and other signaling pathways
Several reports indicated that insulin-like growth factor 

(IGF), fibroblast growth factor (FGF), and VEGF, as well 

as mammalian target of the rapamycin (mTOR) signaling 

pathways are involved in human hepatocarcinogenesis.48,97–99 

Cell surface receptors for IGF, FGF, and VEGF activate 

downstream signal transduction through the receptor-tyrosine 

kinases. These receptors are also important molecular tar-

gets for drugs against HCC such as sorafenib, brivanib, and 

everolimus.48,97–99

IGF-1 and its binding proteins are also known as AR-

targeting genes in prostate cancer cells.100,101 Tsuei et al102 

showed that downregulation of IGF-1 and its binding 

protein-3 were observed in the RNA-binding motif gene 

on the Y chromosome–knockdown HepG2 cells, sug-

gesting the enhancing effect of RNA-binding motif gene 

on the Y chromosome on AR transactivation activity in 

human HCC.

AR could control FGF and FGF-binding protein pro-

duction and affect FGF signaling pathway in prostate 

cancer cells.103 AR may have an impact on FGF signaling 

pathway as well as VEGF signaling pathways in human 

hepatocarcinogenesis.12 PI3K/phosphatase and tensin 

homologs deleted on chromosome 10 (PTEN)/Akt/mTOR 

pathway are involved in many cellular processes of human 

HCC.48 Everolimus and sirolimusis could inhibit HCC 
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growth through this signaling pathway.48 Previous study in 

prostate cancer cell lines104 showed AR-mTOR cross-talk is 

regulated by testosterone availability. Further study will be 

needed at a significance of AR-mTOR cross-talk in human 

hepatocarcinogenesis.

HBV and AR
Chen and Yehs’ group has extensively studied the association 

between HBV infection and AR, or the association between 

HBx protein and AR, and reported that AR is involved 

in human hepatocarcinogenesis.38,39,105–107 Table 1 shows 

several mechanisms of the effects of AR in HBV-associated 

HCC. Many studies with human liver tissues13–31 also support 

this concept. These data support the idea that AR could be 

one of the important molecular targets for the treatment of 

HCC with or without HBV infection.

Conclusion
AR could play critical roles in human HCC and be one of 

the important target molecules for the treatment of HCC. 

The previous controlled study shows the lack of efficacy of 

androgen treatment in unresectable HCC (Table 3).108–115 

However, the present review clearly suggests that AR but 

not androgen could be an important target of hepatocar-

cinogenesis and HCC development, and more specific 

inhibitors of AR would shed light on the treatment of HCC. 

Table 3 Clinical trials targeting androgen in hepatocellular carcinoma

Drug (dosage) Randomized  
study

Number  
of patients

Eligibility 
Child-Pugh class

Stage of HCC Efficacy: mean  
survival or response

Ref

Leuprorelin, flutamide,  
and  tamoxifen

Yes 192 Child-Pugh Class A/B/C:  
112/50/2; cirrhosis, 90%;  
ascites, 26%; HBV, 3%;  HCV, 19%

Okuda’s  
classification stage 
I/II/III: 81/107/4

135.5 d (P=0.21) 108

Tamoxifen (administered  
until death)

Yes 184 Child-Pugh Class A/B/C: 105/59/5; 
cirrhosis, 93%; ascites, 31%;  
HBV, 10%; HCV, 13%

Okuda’s  
classification stage  
I/II/III: 93/83/8

176 d 108

Flutamide for 8 weeks Phase II 32 Measurable advanced HCC  
patients; hepatitis-related, 88%

AJCC stage III/ 
IV: 5/27

10 wks; 9 of 22 (41%),  
stable diseases; 13 (59%),  
progress diseases

109

Antiandrogen (Anandron)  
plus placebo

Yes 58 Unresectable HCC; cirrhosis,  
76%; HBV, 25%

N/A 3.6 mo (NS); 1, complete  
response

110

LHRH agonist plus  
placebo

Yes 61 Unresectable HCC; cirrhosis,  
85%; HBV, 21%

N/A 2.7 mo (NS); 1, partial  
response

110

Antiandrogen plus LHRH  
agonist

Yes 60 Unresectable HCC; cirrhosis,  
82%; HBV, 14%

N/A 3.9 mo (NS); 1, partial  
response

110

Placebo plus placebo Yes 59 Unresectable HCC; cirrhosis,  
83%; HBV, 35%

N/A 5.8 mo 110

Cyproterone acetate No 25 Cirrhotics with unresectable HCC N/A 14 wks; 
5, excess in 29 wks;  
5, response

111

Ketoconazole No 8 Unresectable HCC N/A 6, ,8 weeks 112
D-Tryptophan-6- 
luteinizing  hormone–
releasing hormone

No 17 Cirrhotics with HCC N/A No response 113

LHRH-analog triptorelin 
and tamoxifene

Yes 33 Child-Pugh: 7.7±2.0 (untreated  
HCC); cirrhosis, 27; HBsAg (+), 
69.7%; anti-HDV (+), 15.2%;  
anti-HCV (+), 12.1%

Okuda stage I/III  
(%): 27.3/18.2

282 d (P=0.020 vs  
placebo)

114

Triptorelin plus flutamide Yes 23 Child-Pugh: 8.3±1.6 (untreated 
HCC); cirrhosis, 18; HBsAg (+), 
56.5%; anti-HDV (+), 8.7%;  
anti-HCV (+), 8.7%

Okuda stage I/III  
(%): 21.7/13.0

112 d (NS vs placebo) 114

Placebo Yes 29 Child-Pugh: 8.9±2.1 (untreated  
HCC); cirrhosis, 25; HBsAg (+), 
58.6%; anti-HDV (+), 10.7%;  
anti-HCV (+), 20.0%

Okuda stage I/III  
(%): 24.1/17.2

127 d 114

Abbreviations: AJCC, American Joint Committee on Cancer; HBV, hepatitis B virus; HCV, hepatitis C virus; HDV, hepatitis delta virus; HBsAg, hepatitis B virus surface 
antigen; LHRH, luteinizing hormone-releasing hormone; HCC, hepatocellular carcinoma; Ref, references; NS, not significant; N/A, not applicable; d, days; wks, weeks; mo, 
months; vs, versus.
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Further studies concerning AR and ARGs in the liver should 

be carried out.
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