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Abstract: Titanium dioxide has been proven for toxicity by in vitro and in vivo approaches, 

however, further studies are needed in nano-toxicological research using in silico analysis. In this 

study, Autodock 4.0.5 was used in an attempt to evaluate the interaction of titanium dioxide 

with proteins. Different cellular proteins were sorted to study the interaction, binding sites, and 

active sites as a pocket. These pockets have been determined using CastP – an online server. 

The analysis for the docked structures was performed with regard to the most efficient binding 

with amino acids. This study is the first of its kind to report on the in silico docking interaction 

of titanium dioxide nanoparticles without any surface modification. The higher negative bind-

ing energy shows strong binding of titanium dioxide with proteins. A strong interaction with 

different cellular proteins was observed, and more specifically, titanium dioxide nanoparticles 

showed frequent interaction with proline, lysine, as well as leusine.
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Introduction
Titanium dioxide has been widely used in consumer products, mainly food and cosmet-

ics industry. Although bulk titanium dioxide is considered as safe, there are reports 

wherein these particles are converted into nano form in the processing steps. Titanium 

dioxide nanoparticles (TNPs) are now detected in the consumer products without any 

information about their shape, size or intention. The deliberate use of bulk titanium 

dioxide has exposed TNPs also to human body and environment. This exposure is 

undetected at various stages – synthesis (laboratory), manufacture (industry), use 

(consumer products, devices, medicines, etc) and through environmental exposure 

(through disposal). A lot of studies are in process about the genotoxic and carcinogenic 

potential of TNP. However, the classical toxicology methods are not applicable to 

TNPs as the shape and size greatly depends upon the synthesis method and the unique 

physicochemical properties of the TNPs. Thus, there is a need to develop an in silico 

approach that can validate the data observed from the in vitro and in vivo experiments.1,2 

Docking provides a quick and convenient method to predict the interaction of cellular 

proteins with nanoparticles to predict toxicity. In this work, we have docked the TNP 

with several cellular proteins and tried to predict the TNP–protein interaction.

Materials and methods
Protein data bank file of proteins and TNP
The protein data bank file of TNP was downloaded from the source file of University 

of Sydney website3 and for proteins Research Collaboratory For Structural Bioinfor-

matics protein data bank.4 This has been summarized in Table 1.
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Table 1 Docking results of TNP–proteins interaction

PDB ID Binding  
energy

Kl Intermolecular  
energy

Internal  
energy

Torsional  
energy

Unbound  
extended energy

Ref  
RMS

ICAM-1 IP53 -11.63 2.97 nM -12.73 -2.88 1.1 -2.88 171.59
CCL-20 IM8A -8.25 901.44 nM -9.34 -2.75 1.1 -2.75 39.68

COX-2 N/A (Bounded  
PDB available)

IL-8 1IL8 -4.04 1.09 mM -5.14 -2.66 1.1 -2.66 11.57

NF-kB 1SVC -8.29 841.35 nM -9.39 -2.61 1.1 -2.61 57.33

P-38 3W8Q -11.73 2.52 nM -12.83 -2.49 1.1 -2.49 35.13

PIGF 1FZV -9.26 163.05 nM -10.36 -2.77 1.1 -2.77 41.37

CXCL-1 1MSG 1.67 U/A 0.57 -2.96 1.1 -2.95 13.62

CXCL-3 N/A
CXCL-5 2MGS 576.34 U/A 575.34 42.18 1.1 42.18 8.93
CD 35 1GKG 5420 U/A 5420 84.59 1.1 85.59 16.8
CD 66b N/A
MMP-9 1L6J -9.01 247.86 nM -10.11 -2.72 1.1 -2.72 63.94

Abbreviations: CCL-20, chemokine ligand 20; CD, cluster of differentiation; COX-2, cyclooxygenase; IL-8, interleukin 8; CXCL, C–X–C motif chemokine ligand; ICAM-1, 
intercellular adhesion molecule 1; MMP-9, matrix metallopeptidase 9; N/A, not applicable; NF-kB, nuclear factor kappa B; PIGF, placental growth factor; TNP, titanium dioxide 
nanoparticles; PDB, protein data bank; U/A, unassigned.

Dimensions of TNP
The dimensions of the lattice were derived from PyMol, and 

the size of the nanoparticle was identified.5

Determination of binding site
Computed atlas of surface topography of proteins (CASTp)6 

is used to visualize the annotated functional residues. The 

active sites of proteins have been predicted using CASTp. 

The best binding pockets with high area and volume were 

predicted by CASTp as active sites for each protein.

Docking studies of TNP with proteins
AutoDock 4.0 docking program was applied as discussed in 

our earlier published work.7

Results and discussion
The TNP size was determined as 1.09 nm using PyMol 

software. The efficient formation of protein–nanoparticle 

complexes was identified after observing the negative 

binding energy and intermolecular energy of TNP–protein  

complexes. The higher binding energy and intermolecular 

energy are -11.63 and -12.73, respectively – for ICAM (inter-

cellular adhesion molecule) titanium dioxide nanoparticle 

shows stable docked complex. Figure 1 depicts the hydrogen 

bond formed after docking. On the basis of the binding energy 

and intermolecular energy, it can be stated that ICAM and 

P-38 has stable binding with TNP, whereas no such complex 

formation takes place with CXCL-1 (C–X–C motif chemokine 

ligand), CXCL-5 and cluster of differentiation 35. The binding 

Figure 1 (Continued)
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Figure 1 Interaction of TNP with (A) ICAM protein; (B) CCL-20 protein; (C) IL-8 protein; (D) NF-kB protein; (E) P-38 protein; (F) PIGF protein; (G) CXCL-1 protein; 
(H) CXCL-5 protein; (I) CD-35 protein; (J) MMP-9 protein.
Abbreviations: CCL-20, chemokine ligand 20; CD-35, cluster of differentiation 35; CXCL-1, C–X–C motif chemokine ligand 1; ICAM, intercellular adhesion molecule 1; 
IL-8, interleukin 8; MMP-9, matrix metallopeptidase 9; NF-kB, nuclear factor kappa B; PIGF, placental growth factor; TNP, titanium dioxide nanoparticle.
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and intermolecular energies along with torsion energy and the 

interacting amino acids have been tabulated (Table 1). Binding 

energy ranges from -11.63 to -4.04 for other proteins.

Analyzing the docking results, it can be concluded that 

TNP has frequent binding with positively charged R-group 

and nonpolar aliphatic R-groups amino acid containing amino 

acids of the proteins. More frequently, it binds with lysine 

and proline, and more interestingly, it does not bind with 

methionine. This suggests that hydrogen bond formation 

is prevented by the sulfur containing heavy chain R-group. 

Along with positively charged R-group and nonpolar ali-

phatic R-group amino acids, it also binds with aromatic 

R-group-, polar uncharged R-groups- and negatively charged 

R-group-containing amino acids, but the frequency of bind-

ing is very reduced in number as shown in Table 2. Least 

frequent binding has been observed with tyrosine, alanine, 

asparagine, serine and phenylalanine (Table 2). TNP has 

least affinity with aromatic R-group-containing amino acids, 

which may be attributed to the fact that TNP does not form 

a stable hydrogen bond because of the resonance energy 

stabilization of the amino acid.
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Table 2 Amino acid binding in the docked structure with different proteins

GLY PRO TRP THR ASN GLU GLN LYS SER ASP HIS ILE LEU VAL ARG PHE ALA CYS TYR

ICAM-1 + ++ +++ ++ ++ + +
CCL-20 + ++ + + ++ +
IL-8 ++ ++ + ++ +
NF-kB ++ ++ + + + ++ +
P-38 + + ++ + + ++ + ++ + +
PIGF + + + ++ + ++++
CXCL-1 + + + +
CXCL-5 + + + + + ++++ + +
CD 35 +++++ + + ++ + + + + +
MMP-9 + + ++ ++ + ++
Total frequency 5 12 4 5 3 5 7 9 2 4 4 6 9 4 7 3 2 5 3

Note: +, number of times TNP interacts with the respective amino acid.
Abbreviations: CCL-20, chemokine ligand 20; CD, cluster of differentiation 35; CXCL, C–X–C motif chemokine ligand; ICAM-1, intercellular adhesion molecule 1; 
IL-8, interleukin 8; MMP-9, matrix metallopeptidase 9; NF-kB, nuclear factor kappa B; PIGF, placental growth factor; TNP, titanium dioxide nanoparticle.
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