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Purpose: Perineural invasion (PNI) is the neoplastic invasion of nerves by cancer cells,

a process that may prove to be another metastatic route besides direct invasion, lymphatic

spread, and vascular dissemination. Given the increasing incidence and association with poor

prognosis, revealing the pathogenesis of perineural invasion is of great importance.

Materials and methods: Four datasets related to PNI were downloaded from the Gene

Expression Omnibus database and used to construct weighted gene co-expression network

analysis (WGCNA). The intersection of potential pathways obtained from further correlation

and enrichment analyses of different datasets was validated by the coculture model of

Schwann cells (SCs), flow cytometry and immunohistochemistry (IHC).

Results: GSE7055 and GSE86544 datasets were brought into the analysis for there were

some significant modules related to PNI, while GSE103479 and GSE102238 datasets were

excluded for insignificant differences. In total, 13,841 genes from GSE86544 and 10,809

genes from GSE7055 were used for WGCNA. As a consequence, 19 and 26 modules were

generated, respectively. The purple module of GSE86544 and the dark gray module of

GSE7055 were positively correlated with perineural invasion. Further correlation and enrich-

ment analyses of genes from the two modules suggested that these genes were mainly

enriched in cell cycle processes; especially, the terms S/G2/M phase were enriched. Three

kinds of cells grew vigorously after coculture with SCs ex vivo. The Ki67 staining of the

cervical cancer samples revealed that the Ki67 index of cancer cells surrounding nerves was

higher than of those distant ones.

Conclusion: Our work has identified cancer cell proliferation as a common response to

neural cancerous microenvironments, proving a foundation for cancer cell colonization and

metastasis.
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Introduction
PNI is an active crosstalk between nerve and cancer, involving many molecules,

resulting in neuronal outgrowth and fueling tumor progression.1–3 PNI is regarded as

a common histological feature among many malignancies, including those of the head

and neck,1 colon and rectum,4 prostate,5 biliary tract,6 stomach,7 uterus,8 and

pancreas.9 Moreover, PNI is also an indicator of aggressive tumor behavior and poor

prognosis of these malignancies. The highest incidence of PNI is observed in pancrea-

tic ductal adenocarcinoma (80–100% of the cases).10 Due to the improvement of PNI

detection technology and its clinical significance, increasing attention is being paid to

investigating its pathogenesis.
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Weighted gene co-expression network analysis

(WGCNA), a systematic biological strategy, could be

used for calculating the strength of a relationship using

a weighted power.11–13 The distinct advantage of this

method is that it can identify highly synergistically altered

gene sets and further figure out those most relevant to

phenotypes of interest.12 In the analysis of many diseases,

such as breast cancer,14 osteosarcoma,15 and coronary

artery disease,16 WGCNA has successfully been applied

to survival analysis and the identification of candidate

biomarker genes or pathways based on the association

between gene sets and phenotypes.

As a major component of the peripheral nerves, Schwann

cells (SCs) play a crucial role in promoting axon regeneration

after nerve repair.17 SCs were reported to arrive at the site of

cancer cells before the onset of cancer invasion and then

induce cell movement towards nerves.18 CXCL1219 and

L1CAM20,21 secreted from SCs induced pancreatic cancer

cell migration andmovement towards nerve. In this study, we

constructed a nerve-cancer cell model by co-cultivating SCs

and cancer cells in 6-well transwell plates.

In the neural cancerous microenvironment, different

factors were secreted and put effect on cancer cells and

nerves by different kinds of cancers.22 Here, we aimed to

explore a common factor or a family of factors involved in

PNI in different kinds of cancers. WGCNAwas utilized to

perform this analysis using the transcriptome datasets of

cancers prone to nerve infiltration. The correlations

between the synergistically altered gene modules and

PNI were analyzed. Pathways were enriched and validated

by abovementioned nerve-cancer cell model in a wider

range of tumor samples. These findings may reveal uni-

versal pathways applicable to many malignancies asso-

ciated with PNI, which may further help decipher the

relationship between cancer cells and nerves.

Methods
Data Source and Processing
The study design was created in the form of a flow diagram

(Figure 1). All genomic and clinical data were obtained from

the GEO (Gene Expression Omnibus) database. We obtained

four RNA sequence datasets with the keywords “perineural

invasion” and “tumor” (GSE103479, GSE86544,

GSE102238, and GSE7055) and their MINiML formatted

family files were downloaded. The detail sample information

of these datasets is listed in Table 1. The downloaded plat-

form and MINiML files were transformed by R language

software 3.6.1. The array probes were mapped to their

respective gene IDs using corresponding array annotations

and probes matching multiple genes were removed from the

dataset.We calculated the average expression values of genes

measured by multiple probes. Then, four datasets were stan-

dardized by quantiles. A total of 27,052 genes from

GSE103479, 13,515 genes from GSE102238, 25,526 genes

from GSE7055, and 34,602 genes from GSE86544 were left

after the probe annotation. Since non-varying genes are

usually regarded as background noise, we kept genes with

both median absolute deviation (MAD) values and variances

in the first 75% of GSE103479, GSE7055, and GSE86544.23

All genes of GSE102238 were chosen for WGCNA.

Due to insignificant differences, the GSE103479 (p-value

of module−trait relationships > 0.05) and GSE102238

(p-value of module−trait relationships > 0.05) datasets were

excluded from the analysis.

Downloading of  GSE103479, 
GSE7055 GSE102238, 
and GSE86544 datasets

Data processing

Construct co-expression 
            network

Identifying co-expression
             modules

Pearson’s correlation analysis 
between modules and PNI

Identification of clinical
   significant module

Analyzing gene ontology and
     pathway enrichment

Validation of cell cycle
          ex vivo

Exclude GSE103479 and 
GSE102238 for insignificant 
difference statistically

Figure 1 Flow diagram of the study approach.

Notes: Four datasets (GSE103479, GSE86544, GSE102238, and GSE7055) were

downloaded from the GEO database for further processing. After the pre-

processing, network analyses of gene expression in all four datasets identified

different modules of co-expression genes, respectively. Afterwards, the relevance

between each module and PNI was tested through calculating the relevance

between the feature vectors of modules and phenotypes including PNI.

GSE103479 and GSE102238 were excluded for insufficient significant difference

statistically. The modules most positively or negatively relevant to PNI in the

remaining two datasets were selected for GO and enrichment analyses. Validation

of cell cycle was performed via PI staining and IHC ex vivo.

Abbreviations: PNI, perineural invasion; GO, gene ontology; PI, propidium iodide;

IHC, immunohistochemistry.

Huang et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
OncoTargets and Therapy 2019:1210362

http://www.dovepress.com
http://www.dovepress.com


Analysis of Co-Expression Module

Construction
WGCNA was performed on these filtered genes using the

R “WGCNA” package. When constructing the co-expression

modules, several parameters were filtered by the power law

algorithm.12 Given that WGCNA is determined by the

weighted co-expression, we tested the soft thresholding

power to maintain a more robust stability. The mean connec-

tivity of genes was then defined. According to the specific soft

threshold and expression profiles, we converted the adjacency

matrix into a distance matrix, which was then calculated to

produce a hierarchical clustering tree. Modules were further

clustered at a certain height, which is set as 30 genes in our

research. In addition, a clustering tree on colorful modules and

gray module (genes not clustered in any category) was built.

Two modules were merged, as their Pearson’s correlation

> 0.75.

Construction of Module–Trait
Relationships
Module–trait associations between the module eigengenes

(first principal component of the gene expression profile)

and the phenotypes (clinical traits) were evaluated using

the Pearson’s correlation. For gene significance (GS), the

value of the correlation between each expression profile

and each phenotype was calculated.24

Protein–Protein Interaction (PPI)

Network Establishment and Hub Gene

Identification
The PPI networks were constructed by the Search Tool for the

Retrieval of Interacting Genes (STRING, http://string.embl.

de/)25 and Cytoscape software (Version 3.6.1). Extracting

from the most significant module, genes were mapped to

STRING to evaluate the interactive relationships and visua-

lized by Cytoscape.26 The Molecular Complex Detection

(MCODE), a plug-in for the Cytoscape software, was used

to screen modules of the PPI network with degree cut-off = 2,

node score cut-off = 0.2, k-core = 2, and maximum depth =

100. The hub genes were identified by the cytoHubba plug-

in.27 The top 30 nodes were considered as notable hub genes

and displayed in Table 2 according to node degree.

GO and KEGG Pathway Analyses of

Co-Expression Modules
Metascape (http://metascape.org/) was selected for GO and

KEGG pathway enrichment analyses. Genes obtained

from cytoHubba in the most significant modules of the

GSE86544 and GSE7055 datasets were imported into

Metascape for further analysis. The cut-off criterion set

was a P-value < 0.05 after correction. The network is

visualized using Cytoscape. We identified the common

pathways by comparing the results of both datasets.

Cell Culture
Human pancreatic (BxPC3 and PANC), cervical (ME-

180), and colon (SW480) cancer cell lines were obtained

from the American Type Culture Collection (Manassas,

VA, USA). Rat Schwann cell lines were purchased from

the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China). Cells were cultured in Dulbecco’s

modified Eagle’s medium supplemented with 10% fetal

bovine serum.

Immunohistochemistry
Ten cervical cancer patients with PNI and 10 non-PNI

tissue samples were collected from the International

Table 1 The Details of Datasets That Downloaded from GEO and Used in Present Study

Datasets Platform RNA

Type

Cancer Title Non-PNI

(n)

PNI

(n)

GSE103479 GPL23985 mRNA Colon cancer Gene expression data from stage II and III treated and untreated

colorectal cancer patients

99 13

GSE102238 GPL19072 RNA Pancreatic duct

adenocarcinoma

Gene expression signatures associated with perineural invasion

in pancreatic ductal adenocarcinoma

22 28

GSE86544 GPL10558 mRNA Squamous cell

carcinoma

Expression profiling of cutaneous squamous cell carcinoma with

perineural invasion implicates the p53 pathway in the process

9 15

GSE7055 GPL571 mRNA Prostate cancer Expression of microRNAs and protein-coding genes associated

with perineural invasion in prostate cancer

7 50
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Peace Maternity and Child Health Hospital. All patients

had provided written informed consent, which was con-

ducted in accordance with the Declaration of Helsinki and

approved by the Institutional Ethics Committee of the

IPMCH. The paraffin-embedded blocks were serially sec-

tioned. For immunohistochemical (IHC) analysis, the

samples were incubated with mouse monoclonal anti-

Ki67 antibodies (CST-9449T, Cell Signaling Technology)

at 4°C overnight and washed with PBS for 3 times.

Sections were incubated with the secondary antibody for

30 mins, stained with diaminobenzidine, and counter-

stained with hematoxylin successively. The images were

obtained by microscopy (Leica, Germany). The Ki67

index is calculated by the mean percentage of Ki67-

positive cells under five independent high-power

fields (200×).

Flow Cytometry
Cells from four tumor cell lines (SW480, PANC-1,

BxPC-3, and ME-180) were seeded into 6-well plates

at 2 × 105 cells per well and cultured in serum-free

DMEM medium for 12 hrs. A total of 1 × 105 SCs

were seeded into the upper chamber of a 6-well trans-

well filter (0.4 μm, Corning Inc., Glendale, AZ, USA)

and cocultured for 36 hrs, with cancer cells at the

bottom of the plate; non-cocultured samples of these

cells were also maintained as control groups. All cancer

cells were harvested and fixed in 70% ethanol overnight;

then, they were incubated with RNase at the concentra-

tion of 50 μg/mL for 30 mins. Next, propidium iodide

(PI; P4170, Sigma) was added into these tubes for

another 30 mins. Analyses of PI-positive cells were

used on BD FACS Canto II, and Modfit software

(Verity Software, Topsham, ME, USA) was chosen for

subsequent data processing.

Statistical Analysis
Statistical analyses were performed using GraphPad Prism

7. Data are presented as mean ± SEM. P-values ≤ 0.05

were considered statistically significant.

Results
Gene Expression Values of Four GEO

Datasets Associated with PNI
We downloaded four datasets associated with PNI from

GEO in order to further construct gene co-expression net-

works. The GSE86544 data set comprised 15 head and

neck cancer cases with PNI and 9 normal persons. There

were 57 cases of prostate cancer totally included in

GSE7055, with 50 prostate adenocarcinomas with PNI

and 7 without it. The other two datasets, GSE102238 and

GSE103479, containing 50 and 156 samples, including 28

and 13 cases with PNI, respectively. The four datasets

were standardized and the results are shown in

Supplementary Figure 1. Finally, we obtained 10,821

genes from GSE103479, 13,515 genes from GSE102238,

10,809 genes from GSE7055, and 13,841 genes from

GSE86544 for WCGNA after performing probe match

and MAD screen.

These genes were used for cluster analysis to detect

outliers using the flashclust tools of the WGCNA pack-

age. The process for the analysis (Supplementary

Figure 2) of four datasets was similar. We have dis-

played the cluster analysis images for GSE86544 and

Table 2 Top 30 Hub Genes Identified by CytoHubba

GSE7055 GSE86544

Gene Symbol Degree Gene Symbol Degree

TOP2A 63 PK3CA 135

CCNB1 58 IMPDH2 109

CDK1 57 CALM2 101

MAD2L1 55 PAICS 89

CCNA2 54 KRAS 86

CDKN3 53 PRKACA 86

CCNB2 53 RAC2 77

RRM2 52 H2AFZ 75

BIRC5 51 ALDH18A1 72

PRC1 51 POLR2L 72

MCM2 50 HELZ2 71

TPX2 50 CUL1 67

MELK 50 AURKA 67

FEN1 49 OASL 67

TTK 49 IL10 65

BUB1B 49 IFNG 65

KIF11 49 TLR4 63

ZWINT 48 KIT 63

GINS2 48 ECHHADH 63

DLGAP5 48 SNRPF 61

ASPM 48 PAFAH1B1 61

TRIP13 47 GTF2F1 61

KIF20A 47 BTRC 58

NUSAP1 47 CCNB2 58

CEP55 47 UBA1 58

UBE2C 46 GNG13 58

FOXM1 45 GNA13 56

PCLAF 45 DDX21 56

HMMR 45 PRS13 55

RRM1 44 GNG2 55
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GSE7055 as representative results. No abnormal sample

from GSE86544 was excluded (Figure 2A), but four

prostate cancer samples from GSE7055 were excluded

(Figure 3A).

Figure 2 Clustering of samples and determination of soft-thresholding power in GSE86544.

Notes: (A) The clusteringwas based on the expression data ofGSE86544,which contained 15 PNI and 9 non-PNI samples. No samples inGSE86544were excluded. (B) Analysis of the
scale-free fit index for various soft-thresholding powers in GSE86544. (C) Analysis of the mean connectivity for various soft-thresholding powers. In all, 5 was themost fit power value

for GSE86544.

Abbreviation: PNI, perineural invasion.
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Construction of Co-Expression Modules
The soft thresholding power was one of the critical para-

meters in WGCNA, making the constructed network more

in line with the scale-free network characteristics. When the

power value equaled 5, the degree of independence reached

0.85 and the average connectivity degree was appropriate

(Figure 2B and C). Hence, a power value of 5 was set for

producing a clustering dendrogram of the 13,814 genes in

GSE86544 (Figure 4A). Nineteen modules were generated.

There were 4934 genes contained in the largest module and

72 genes in the smallest one. The same operation was

performed for the genes from GSE7055. The most

Figure 3 Clustering of samples and determination of soft-thresholding power in GSE7055.

Notes: (A) The clustering was based on the expression data of GSE7055, which contained 50 PNI and 7 non-PNI samples. Four samples in GSE7055 were excluded. (B)
Analysis of the scale-free fit index for various soft-thresholding powers in GSE7055. (C) Analysis of the mean connectivity for various soft-thresholding powers. In all, 6 was

the most fit power value for GSE7055.

Abbreviation: PNI, perineural invasion.
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Figure 4 Construction of co-expression modules by WGCNA package.

Notes: (A) The cluster dendrogram of genes in GSE86544. Each branch in the figure represents one gene, and every color below represents one co-expression module. (B)
Hierarchical clustering of module hub genes of GSE86544 that summarizes the modules yielded in the clustering analysis. (C) Heatmap plot of the adjacencies in the hub

gene network of GSE86544. (D) The cluster dendrogram of genes in GSE7055. A total of 26 modules were generated. (E) Hierarchical clustering of module hub genes of

GSE7055 that summarize the modules yielded in the clustering analysis. (F) Heatmap plot of the adjacencies in the hub gene network of GSE7055.

Abbreviation: WGCNA, weighted gene co-expression network analysis.

Dovepress Huang et al

OncoTargets and Therapy 2019:12 submit your manuscript | www.dovepress.com

DovePress
10367

Powered by TCPDF (www.tcpdf.org)

http://www.dovepress.com
http://www.dovepress.com


appropriate power value was 6 and 26 modules were gener-

ated (Figure 3B and C).

Identification of Gene Co-Expression

Modules Corresponding to Clinical Traits
To explore relationships across all modules, we quantified

the module similarity according to the eigengene correlation

and clustered them (Figure 4). Furthermore, the expression

data from different genes within each calculated module

were used to determine the module eigengenes in the four co-

expression networks, respectively. The eigengenes were then

correlated with clinical traits of interest, especially PNI.

Thus, modules highly correlated with PNI could be selected

and the most significant associations could also be identified.

GSE103479 and GSE102238 were excluded, as they did not

contain any module that was significantly related to PNI

(Supplementary Figure 2). However, several modules from

GSE7055 and GSE86544 were significantly correlated with

PNI. P-value of 10 modules in case of the GSE86544 dataset

showed significant difference including 4 modules (light

cyan, green, purple, and brown) that were positively asso-

ciated with PNI (Figure 5A). There were 2 modules (dark

gray and purple) positively correlated with PNI in the

GSE7055 dataset (Figure 5B). The purple module of

GSE86544 and the dark gray module of GSE7055 were

chosen for further analysis because of their minimum

P-value of modules with positive association with PNI.

PPI Network and Hub Gene Identification
The PPI networks were constructed using genes from the

purple module of GSE86544 and the dark gray module of

GSE7055. Then, 1263 genes of GSE86544 and 92 genes

of GSE7055 were mapped to cytoscape to carry out topo-

logical algorithms. The top 30 genes of Degree topological

algorithm are listed in Table 2 and considered as hub

genes. Most hub genes of GSE7055 were related to cell

mitosis and cell cycle. Genes directly regulating cell cycle

include cyclin B1 (CCNB1), cyclin-dependent kinase 1

(CDK1), cyclin-dependent kinase inhibitor 3 (CDKN3),

cyclin B2 (CCNB2), and ribonucleotide reductase regula-

tory subunit M2 (RRM2).

DNA topoisomerase II alpha (TOP2A), mitotic arrest

deficiency protein 2 (MAD2L1) and minichromosome

maintenance protein 2 (MCM2), Polycomb-repressive

complex (PRC), TTK protein kinase (TTK), BUB1 mitotic

checkpoint serine/threonine kinase B (BUB1B), kinesin

family member 11 (KIF11), abnormal spindle microtubule

assembly (ASPM), nucleolar and spindle associated protein

1 (NUSAP1), and PCNA clamp associated factor (PCLAF)

involve in the DNA replication and cell mitosis. CCNB2

and aurora kinase A (AURKA) in GSE86544 are associated

with cell cycle. There was no statistical difference of

CCNB2 expression between non-PNI group and PNI

group in colon cancer (GSE103479) and pancreatic cancer

(GSE102238) (Supplementary Figure 3). The functions of

genes were further explored in enrichment analysis.

Functional Annotation and Pathway

Analysis of Genes Highly Associated with

PNI
GO and KEGG enrichment analyses were performed by

Metascape. The top 20 pathways were listed as below and

the results revealed that genes of GSE86544 were mainly

enriched in cytokine production (GO0001816), cytokine

related-mediated signal pathway (GO0019221), and regula-

tion of mitotic cell cycle (GO0007346) (Figure 6A and B,

Supplementary Tables 1 and 2). The majority of the GO

terms of GSE7055 were associated with cell adhesion

(GO0007156), cell cycle (GO0045787), and DNA replica-

tion (GO0006260). For the GSE7055 dataset, the Reactome

pathway analysis revealed that significant genes were

enriched at the G2/M DNA replication checkpoint

(hsa69478) (Figure 6C and D).

The intersection of the top 20 pathways showed that

only the cell cycle pathway was both enriched in two

datasets. Genes involved in this process were different

between the two datasets. Combined with the top 30 hub

genes mentioned earlier, we aim to explore the effects of

nerves on tumor cell cycle.

Nerves Promote the Proliferation of

Several Cancer Cells
Cells from four cancer cell lines, including two kinds of

pancreatic cancer cell lines (BxPC-3 and PANC-1), one

cervical cancer cell line (ME-180), and one colon cancer

cell line (SW480), were used to analyze the effect of co-

culture with SCs on cancer cell progression. The co-

culture model was constructed by cancer cells and SCs

(Figure 7A). After co-culturing PANC-1, ME-180, and

SW480 cells with SCs, the proportion of cells in the S or

G2/M phase increased, accompanied by a decrease in the

proportion of cells in the G1 phase. However, there was no

difference between cell proportions in different phases

before and after co-culturing BxPC-3 (a human orthotopic
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pancreatic adenocarcinoma cell line) with SCs (Figure 7B

and C). These results indicated that SCs promote the

proliferation of cancer cells prone to PNI as a response

to nerve-derived signals.

In order to perform further validation, cervical can-

cer samples diagnosed as PNI and non-PNI were stained

using anti-Ki67 antibodies. IHC analysis of the Ki67-

stained samples revealed that cervical cancer cells sur-

rounding nerves had a stronger staining intensity than

those distant ones (Figure 7D). These results indicated

that cancer cells infiltrating nerves grew more vigor-

ously than those at their primary site and that the neural

cancerous microenvironment contributes to cancer

progression.

Figure 5 Correlation between module eigengenes and clinical traits especially PNI.

Notes: (A and B) Module–trait relationships in GSE86544 and GSE7055. The correlation coefficients and corresponding P-values in the brackets are contained in each cell.

The table is color-coded by correlation between eigengenes and traits according to the color legend on the right side. The modules with the most significant differences are

displayed in brackets.

Abbreviation: PNI, perineural invasion.
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Discussion
Given the yearly improvements and awareness of PNI-

detection technologies, it is important to unravel the

mechanisms underlying PNI and disrupt it in cancer.28

WGCNA has advantages over unweighted network espe-

cially in the aspect of high sensitivity to low abundance

and low information loss.29 As a recently developed

method, WGCNA is usually used to analyze gene expres-

sion data and further explore potential therapeutic targets

or diagnostic biomarkers.30 Considering the reliability of

the results, at least 20 samples were required for

WGCNA.31 In this study, we explored potential pathways

underlying PNI using RNA omics data from the GEO

database. Four datasets were obtained and processed

using R “WGCNA” package. A total of 19 modules from

GSE 86544 and 26 modules from GSE7055 were gener-

ated and meanwhile relationships between these modules

and PNI were constructed. The most relevant module in

each dataset was selected for further analysis. Through the

enrichment analyses, we found that cell cycle was the only

enriched pathway involved in PNI for head and neck

cancer and prostate cancer simultaneously. Subsequently,

samples of several other cancers including pancreatic can-

cer, colon cancer and cervical cancer that are liable to PNI

were subjected for further experimental verification. Our

results demonstrated that nerves facilitated the growth of

several kinds of cancer cells; this might be a common

result as a response to peripheral environment applicable

to all cancers prone to PNI.

Several reports have shown that different factors

including chemokines, transmitters, neurotrophic factors,

and adhesion factors participate in the mutual interaction

between nerve and cancer cells;19,21,32,33 most of them laid

particular emphasis on the ability of migration, invasion,

and metastasis of cancer cells towards nerves. In this

study, we detected the cell cycle of several cell lines of

cancers inclined to PNI and found their proliferation

increased upon being co-cultured with SCs. It is rational

Figure 6 GO and KEGG pathway enrichment analyses in co-expression modules.

Notes: To further get into the relationship among terms, the top 20 enriched terms were selected to build a network plot by Metascape. Each node represents an enriched

term. (A and C) Boxplot of enriched terms across input gene lists from GSE86544 and GSE7055, respectively, colored by P-values. (B and D) Network of enriched terms,

colored by P-value. Terms containing more genes tend to have a more significant P-value.

Abbreviations: KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology.
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Figure 7 SCs promote proliferation of PANC-3, ME-180, and SW480 cells which are prone to PNI, while the proliferation of BxPC-3 is not affected.

Notes: (A) Schematic illustration of the coculture model. (B and C) Flow cytometry was used to asses cell cycle after 36 hrs of several cancer cell lines (PANC-3, ME-180,

SW480, and BxPC-3) co-culturing or not with SCs. (D) Ki67 staining of cervical cancer samples (Left image, 100× magnification, scale bar, 100 μm; Right image, 200×

magnification, scale bar, 50 μm). White dotted lines indicate the nerve. (E) The statistical results show the comparison of the Ki67 index between two groups. The data

presented are the mean ± SEM (*P < 0.05, **P < 0.01 and ***P < 0.001 compared to the control group. ns, not significant).

Abbreviations: SCs, Schwann cells; SEM, Standard Error of Mean.
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that cancer cells proliferate responding to the same

molecules associated with nerve regeneration.34 The

nerve microenvironment is abundant in neurotrophic

factors which have been reported to favor cancer

proliferation.35,36

In our study, several hub genes were identified. Some

of them, such as cyclins and cyclin-dependent kinases,

directly participate in cycle regulation, while some genes

influence cell cycle through other factors. MCM2 appears

to be an attractive alternative to Ki 67 and expresses in

actively proliferating cells.37 Baculoviral IAP repeat con-

taining 5 (BIRC5), also called Survivin, has been reported

to influence cell division and proliferation and inhibit

apoptosis.38 Different genes involving cell cycle were

enriched between the GSE7055 and GSE86544, which

suggested that the factors or pathways affecting cell

cycle differed in prostate and head and neck cancer.

It is worth mentioning that chemokines and adhesion

factors support the perineural invasion. CXCL12 was

reported to promote the mitosis and proliferation of vascular

endothelial cells, and tumor cells in salivary adenoid cystic

carcinoma.39 CX3CL1 could promote prostate cancer cell

growth and metastasis through a steroid receptor coactivator

or focal adhesion kinase pathway.40 These results indicated

that chemokines and adhesion factors were involved in PNI

and some of them could promote the proliferation of cancer

cells. Despite their absence from the overlapped pathway of

the two modules, chemokines and adhesion factors might

still be the upstream factors regulating the cell cycle and

needed to be further investigated.

Tumor metastasis and proliferation often occur simul-

taneously. Due to the heterogeneity of tumors, the sig-

nals mediating PNI in various cancers are different.

However, a sufficient number of cancer cells is essential

for their colonization and spread along nerves.

Disrupting the expression of the neurotrophic factors

and their receptors could result in tumor growth inhibi-

tion, specifically in breast cancer, prostatic, and pancrea-

tic carcinomas.41,42 Magnon et al43 and Zhao et al44 have

performed targeted therapy for blocking nerves in pros-

tate cancer and gastric cancer, respectively, and the

results have demonstrated that the removal of innerva-

tion could inhibit the growth and invasion of tumors.

There are very few reports showing that nerves directly

promote tumor cell proliferation; our study fills this gap

in literature. However, further studies are required to

further explore the signals promoting cancer growth

which might play potential roles in mediating PNI.

Conclusion
In summary, our work has identified the proliferation of

cancer cells as a common response to neural cancerous

microenvironment, proving foundation for cancer cells

colonization and spread away. Next, we would like to

explore signals regulating cancer cell growth and hope to

interrupt the nerve–cancer cell interaction and, thus, block

the cancer cell metastasis.
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