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Background: Chemotherapy-induced peripheral neuropathy is a severe side effect of 
chemotherapeutic agents. Vagus nerve stimulation attenuates neuroinflammation by activat-
ing the cholinergic anti-inflammatory pathway and thus may attenuate CIPN.
Methods: Adult male Sprague-Dawley rats received intraperitoneal paclitaxel injection 
(2 mg/kg) every other day for a total of 4 injections. Three weeks later, the left cervical 
vagus nerve was exposed under general anesthesia, and the rats randomly received 20-min 
stimulation (1 V, 2 ms, 5 Hz, 30 s ON/5 min OFF) or sham stimulation. Heat and mechanical 
pain sensitivity was evaluated using Hargreaves and von Frey tests before and after treatment 
(n=12 per group per time point). Additionally, rats receiving paclitaxel or saline but no 
surgery were included. Expression of representative pro- and anti-inflammatory cytokines in 
dorsal root ganglia was assessed by Western blotting assays and immunohistochemistry.
Results: Paclitaxel significantly reduced the sensitivity for heat (withdrawal latency: pacli-
taxel 6.16 ± 0.54 s vs saline 9.93 ± 0.78 s, p<0.001) and mechanical pain (withdrawal 
frequency: paclitaxel 32.22 ± 15.51% vs saline 3.33 ± 4.92%, p<0.001). Compared with 
sham-stimulated rats, rats receiving vagus nerve stimulation had significantly higher sensi-
tivity for heat (withdrawal latency: VNS 10.28 ± 1.15 s vs sham 6.27 ± 0.56 s, p<0.001) and 
mechanical pain (withdrawal frequency: VNS 10.00 ± 9.54% vs Sham 31.67 ± 18.99%, 
p=0.003) on +1 day, but not 7 days later (withdrawal latency: VNS 6.97 ± 1.13 s vs Sham 
6.23 ± 0.79 s, p=0.080; withdrawal frequency: VNS 21.67 ± 11.93% vs Sham 23.33 ± 7.79%, 
p=0.689). Western blotting assays and immunohistochemistry revealed that interleukin-10 
level was elevated in the dorsal root ganglia of rats receiving vagus nerve stimulation while 
no apparent changes in NF-κB or TNF-α levels were observed.
Conclusion: Vagus nerve stimulation could transiently attenuate paclitaxel-induced hyper-
algesia in rats. Future studies are needed to investigate whether stimulation with different 
protocols could achieve durable effects.
Keywords: chemotherapy-induced peripheral neuropathy, neuroinflammation, vagus nerve 
stimulation, cholinergic anti-inflammatory pathway, interleukin-10

Introduction
Chemotherapy-induced peripheral neuropathy (CIPN), which is a severe side effect 
of chemotherapeutic agents, manifests pain, paresthesia, numbness, and tingling 
sensation. Approximately 70% of the patients receiving chemotherapy develop 
CIPN within the first month of treatment.1,2 Dose reduction or discontinuation of 
treatment results in dissipation of CIPN in majority of the cases, but is incompatible 
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with the overall treatment goal.3 Additionally, CIPN per-
sists for over 6 months after discontinuation of chemother-
apy in approximately 30% of the patients. Antidepressants 
and photobiomodulation are also commonly used, but 
typically with only limited effects.4

Neuroinflammation is a key contributor to CIPN. 
Chemotherapeutic agents increase production and release of 
pro-inflammatory cytokines by glial cells, which in turn cause 
a cascade of signaling effects to sensitize neurons to incoming 
stimuli.5 Treatments that inhibit neuroinflammation have been 
shown to be effective in attenuating CIPN. Vagus nerve sti-
mulation (VNS) activates the cholinergic anti-inflammatory 
pathway, down-regulates pro-inflammatory cytokines such as 
interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF- 
α),6,7 and inhibits neuroinflammation.8,9 These findings led 
us to hypothesize that VNS might mitigate CIPN.

In the current study, we investigated whether VNS 
could reduce pain hypersensitivity in a rat model of pacli-
taxel-induced CIPN.10 We also examined the potential 
effects of VNS on the levels of representative pro- and 
anti-inflammatory cytokines in the dorsal root ganglion 
(DRG) in this model.11

Materials and Methods
Animals and Experimental Design
The study protocol was approved by the Ethics Committee 
of Peking University People’s Hospital, and the study was 
carried out in accordance with the Guidelines for the 

Ethical Review of Laboratory Animal Welfare (People’s 
Republic of China National Standard GB/T 35892–2018).

Adult male Sprague-Dawley rats (220–250 g; Vital 
River Laboratory, Beijing, China) were maintained in 
a specific-pathogen-free small animal facility at 22 ± 3°C 
under a 12/12 h light/dark cycle, with ad libitum access to 
standard rodent chow and water.

Rats were randomly divided into the following four 
groups: control, CIPN, sham, and VNS. The CIPN, sham, 
and VNS groups received 2 mg/kg paclitaxel intraperitone-
ally on alternative days for a total of 4 days. The control 
group received saline. On day 0, VNS was performed in the 
VNS group, mock surgery was performed in the sham group, 
and no procedure was carried out in the CIPN or control 
groups. Behavioral tests were performed on days −28, 0, +1, 
and +7 (n=12 per group per time point) (Figure 1).

VNS
Rats were anesthetized with 1.5%-3.0% isoflurane 
(Abbott Laboratories, Chicago, IL, USA). The left cer-
vical vagus nerve was isolated as described previously.12 

Briefly, VNS was delivered using an electronic stimula-
tor (YLS-9A; Zhongshidichuang Technology, Beijing, 
China). The vagus nerve was stimulated for 20 min 
using the following parameters: 1 V, 2 ms, 5 Hz, and 
30 s ON/5 min OFF.13,14 Rats in the sham stimulation 
group received identical surgery but without actual 
VNS. Heart rate and blood pressure were monitored 

-28
-25 -23

VNS /  
mock surgery

0
-27 -21

+7+1

Plantar test 

Von Frey Hairs

CIPN, sham and VNS: 

Paclitaxel  

(2mg/kg on four alternative days)

Control: Saline  

(2ml/kg on four alternative days)

Timeline  
(days)

Figure 1 Experimental design. 
Abbreviation: VNS, vagus nerve stimulation.
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throughout the procedure using a tail-cuff system 
(BP2010A, Softron, Beijing, China).

Behavioral Tests
The person who performed the behavioral tests was 
blinded to the study design. Heat pain sensitivity in the 
plantar test was measured as described previously.15 

Briefly, with the rats in a plastic compartment 
(24*20*10 cm), the plantar surface of the hindlimb was 
targeted using a radiant heat source (BME-410C fully 
automatic heat-pain stimulator, Institute of Biomedical 
Engineering, Chinese Academy of Medical Sciences, 
Beijing, China). Heat intensity was adjusted such that 
mean baseline withdrawal latencies were between 7 and 
12 s. Heat hyperalgesia was defined as a hindpaw with-
drawal latency shorter than at baseline. Maximal latency 
was set at 15 s to avoid tissue damage. Each rat was tested 
3 times for each hindpaw, with 5-min intervals. The aver-
age of six measurements was used for analysis (n=12 per 
group per time point).

Mechanical pain was examined using a von Frey 
method as described previously.16 Briefly, rats were 
placed in a plastic cage on an elevated wire mesh plat-
form. Pressure (4 or 15 g) was directed to the mid- 
plantar surface of the hindpaw for 5 s for 5 times at 
each hindpaw. For each rat, the percentage of withdra-
wal response in 10 tests (5 tests for each hindpaw, both 
sides) was used to reflect pain sensitivity (n=12 per 
group per time point). Allodynia was defined as 
increased frequency of withdrawal to 4-g von Frey 
hair. Hyperalgesia was defined as increased frequency 
of withdrawal to 15-g von Frey hair.

Western Blotting Assays
Rats were euthanized with CO2 inhalation after behavioral 
tests (n=7 per group per time point). Bilateral DRGs at L4- 
6 were removed, snap-frozen in liquid nitrogen, and stored 
at −80°C. Tissues were homogenized with an electric 
homogenizer in radioimmunoprecipitation assay buffer 
(Thermo Fisher Scientific, Waltham, MA, USA) contain-
ing protease and phosphatase inhibitors (Applygen 
Technologies, Beijing, China). Proteins were separated 
by 10% SDS-PAGE, transferred to PVDF membranes 
(Millipore, USA), blocked with 5% low-fat milk for 1 
h at room temperature, and then incubated overnight at 
4°C in Tris-buffered saline (TBS). Primary antibodies (all 
at 1:1000 dilution) against the following proteins were 
used: TNF-α (catalog No. YT4689; ImmunoWay, Plano, 

TX, USA), nuclear factor kappa B (NF-κB) (8242; Cell 
Signaling Technology, Beverly, MA, USA), interleukin-10 
(20850-1-AP; Proteintech, Rosemont, IL, USA), and β- 
actin (TA-09; Zhongshan Golden Bridge, Beijing, China). 
After washing, membranes were incubated at room tem-
perature for 1 h with an appropriate secondary antibody 
(1:3000 dilution; Zhongshan Golden Bridge). Protein 
bands were visualized using the ECL method (Thermo 
Fisher Scientific, Waltham, MA, USA), and analyzed 
using ImageJ software (National Institutes of Health, 
Bethesda, MD, USA).

Immunohistochemistry
Rats were deeply anesthetized with sodium pentobarbital 
(40 mg/kg), and then perfused with 0.9% saline (pH 7.4) at 
37°C followed by ice-cold 4% paraformaldehyde through 
the ascending aorta (n=5 per group per time point). 
Bilateral DRGs at L4-6 were harvested, fixed in formalde-
hyde, and paraffin-embedded. Sections (4 μm) were 
stained with hematoxylin and eosin using a standard 
protocol.17

Immunohistochemistry was performed as described 
previously.18 Briefly, after antigen retrieval at 95°C, 
slices were incubated at 4°C overnight with primary 
antibodies (diluted 1:100) against the following proteins: 
NF-κB subunit p65 (Abcam, Cambridge, UK), TNF-α 
(Abcam) and IL-10 (Proteintech). The tissue sections 
were then incubated with a biotinylated goat anti-rabbit 
secondary antibody conjugated to streptavidin- 
horseradish peroxidase. Antibody binding was visua-
lized using 3ʹ-diaminobenzidine, and slices were coun-
terstained with hematoxylin. For negative controls, 
primary antibody was omitted. DRGs were identified 
within tissue sections and selected for image capture 
using confocal laser scanning microscopy (Leica, 
Germany). The images were quantitatively evaluated 
using the IHC Profiler plugin in ImageJ as described.19 

Staining was scored automatically based on the average 
gray value (staining intensity) and percentage of total 
surface area showing positive staining (staining area) as 
following: 4 = high positive, 3 = positive, 2 = low 
positive, and 1 = negative.

Statistical Analysis
Normally distributed data were expressed as mean ± 
standard deviation (SD). Differences in normally distrib-
uted data with heterogeneous variance were assessed for 
significance using one-way ANOVA followed by the 
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Tukey post hoc test, while Welch’s ANOVA followed by 
Dunnett T3 post hoc test was applied to data that vio-
lated the homogeneity of variance. Skewed data were 
presented as median and interquartile range, and differ-
ences were assessed for significance using Kruskal– 
Wallis tests. Immunohistochemistry scores were 
assessed using Mann–Whitney tests. GraphPad Prism 8 
(GraphPad Software, San Diego, CA) was used for 
statistical analyses. P < 0.05 was considered statistically 
significant.

Results
Behavioral Tests
The heat or mechanical pain sensitivity at the baseline did 
not differ significantly among the four groups (Figure 2). 
Paclitaxel treatment significantly reduced withdrawal 
latency in the Hargreaves test (withdrawal latency: pacli-
taxel 6.16 ± 0.54 s vs saline 9.93 ± 0.78 s, p<0.001) 
(Figure 2A). Compared to sham-stimulated rats, rats 
receiving VNS showed significantly longer withdrawal 
latency on +1 day (withdrawal latency: VNS 10.28 ± 
1.15 s vs Sham 6.27 ± 0.56 s, p<0.001), but not on 
+7 day (withdrawal latency: VNS 6.97 ± 1.13 s vs Sham 
6.23 ± 0.79 s, p=0.080) (Figure 2A).

A similar response pattern was observed in mechan-
ical pain. Paclitaxel treatment significantly increased 
withdrawal frequency in the von Frey test (withdrawal 
frequency: paclitaxel 32.22 ± 15.51% vs saline 3.33 ± 
4.92%, p<0.001) (Figure 2B). Compared with sham- 
stimulated rats, withdrawal frequency declined at 
1 day after the surgery (withdrawal frequency: VNS 
10.00 ± 9.54% vs Sham 31.67 ± 18.99%, p=0.003), but 
not 7 days later (withdrawal frequency: VNS 21.67 ± 
11.93% vs Sham 23.33 ± 7.79%, p=0.689) (Figure 2B).

Representative Pro- and 
Anti-Inflammatory Cytokines in DRG
Compared with untreated rats, no changes in NF-κB or 
TNF-α expression were observed in rats receiving VNS 
while IL-10 levels were significantly upregulated 
(Figure 3A and B). Additionally, compared to sham- 
stimulated rats, Western blot analysis demonstrated 
there was a nearly 5-fold increase in IL-10 levels in 
the DRG of rats receiving VNS on +1 day (p = 
0.008), but there was no statistical difference between 
the two groups on +7 day (p=0.843). These results were 
confirmed by immunohistochemistry (Figure 4). 
Interestingly, Western blot analysis showed slightly 
higher IL-10 levels in rats receiving anesthesia and 
surgery (VNS and sham stimulation) than that without 
the former intervention (Control and CIPN) on +7 day. 
However, immunohistochemistry did not reveal statisti-
cal difference in DRG neurons.

Discussion
Therapeutic management of CIPN is a long-standing chal-
lenge in cancer treatment, and the US Food and Drug 
Administration has not licensed any medication for its 
management.20 CIPN involves the infiltration of immune 
cells into the peripheral nervous system, which triggers 
inflammation of peripheral sensory neurons in the DRG. 
For this reason, attenuating neuroinflammation is a popular 
goal for therapeutic management.5,21 In the current study, 
we found that VNS alleviated heat and mechanical hyper-
algesia in a rat model of CIPN. This effect appeared on +1 
but not on +7 day. Furthermore, Western blotting assays 
and immunohistochemistry revealed that IL-10 expression 
was significantly up-regulated on +1 day but declined over 
time. Surprisingly, VNS did not significantly alter 
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Figure 2 The effects of vagus nerve stimulation (VNS) on heat and mechanical hyperalgesia in a chemotherapy-induced peripheral neuropathy (CIPN) model. CIPN was 
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expression of pro-inflammatory effectors NF-κB and TNF- 
α at any time point tested.

The vagus nerve is composed of 80% sensory afferent 
fibers and 20% motor efferent fibers. It provides 
a considerable interface between the brain and the whole 
body, including heart, lung, and gastrointestinal system. 
The vagus nerve regulates acetylcholine release from the 
efferent cholinergic nerve, a parasympathetic element of 
the autonomic nervous system.22 VNS can modulate the 
autonomic nervous system by activating the cholinergic 
anti-inflammatory pathway, suppressing inflammation.23 

To our knowledge, different pulse widths activated special 
nerves. For instance, pulse width of 0.2 ~ 0.5 ms typically 
produces central effects through the vagal afferents. And 2 
ms exerts anti-inflammatory effects via the vagal efferents. 
In clinical practice, 0.5 ms is a commonly used therapeutic 
stimulation pulse width for epilepsy and depression.24 And 
Borovikova et al reported a stimulation pulse width of 2 
ms in their study on cholinergic anti-inflammatory activ-
ities of VNS.6

VNS has shown preclinical efficacy in animal models 
of some inflammation-related disorders, such as sepsis, 
inflammatory bowel disease, myocardial ischemia 

reperfusion injury, rheumatoid arthritis, and kidney ische-
mia-reperfusion injury.25,26 Moreover, VNS has been 
approved by the Food and Drug Administration for treat-
ment of certain brain-related conditions.27,28 We found that 
a single treatment of VNS effectively alleviated hyperal-
gesia after 24 h: paclitaxel shortened withdrawal latency 
and increased withdrawal frequency in rats, indicating 
increased sensitivity to heat and pain, which was reversed 
by VNS. Nevertheless, the relief was short-lived: heat 
sensitivity and pain returned to pre-treatment levels 
by day +7. Similarly, another study showed that VNS 
mitigated kidney ischemia-reperfusion injury transiently, 
with effects peaking around 24 h and lasting for 2 
days.25 Our results provide evidence supporting VNS as 
a potential novel treatment of CIPN, especially since the 
anatomy and function of the vagus nerve are comparable 
between rats and humans.29

In a rat model of paclitaxel-induced neuropathy simi-
lar to ours, increased expression of pro-inflammatory 
cytokines (TNF-α, IL-1β) was accompanied by 
decreased expression of anti-inflammatory cytokines 
(IL-10, IL-4). The overall effect was neuroinflammation 
and neurotoxicity in the DRG.30,31 In fact, paclitaxel 

NF- B

TNF-

IL-10

-actin 42kDa

62kDa

25kDa

45kDa

Control CIPN VNS Sham

Day +1

IL-10 45kDa

Control CIPN VNS Sham

Day +7

NF- B 62kDa

42kDa

TNF- 25kDa

-actin

A C

B D

NF- B TNF- IL-10
0

2

4

6

8

Day +1

R
el

at
iv

e 
pr

ot
ei

n 
ex

pr
es

si
on Control (saline)

CIPN (paclitaxel)

VNS (paclitaxel + VNS)

sham (paclitaxel + mock surgery)

*
* *

NF- B TNF- IL-10
0

1

2

3

4

5

Day +7

R
el

at
iv

e 
pr

ot
ei

n 
ex

pr
es

si
on Control (saline)

CIPN (paclitaxel)

VNS (paclitaxel + VNS)

sham (paclitaxel + mock surgery)

*

*
*

*
*

Figure 3 Effect of vagus nerve stimulation (VNS) on levels of pro- and anti-inflammatory factors. Protein was extracted from dorsal root ganglia of CIPN rats treated with 
VNS or not. (A, B) Representative Western blot and corresponding densitometry on day +1. (C, D) Representative Western blot and corresponding densitometry on day 
+7. n = 7 per group per time point. * p<0.05.
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augments expression of NF-κB in DRG, up-regulating 
TNF-α.32 Additionally, TNF-α serves as an activator of 
NF-κB in neurons.33 Accordingly, the interaction 
between NF-κB and TNF-α plays a vital role in the 
development and maintenance of CIPN. The role of IL- 
10 in CIPN is less clear due to conflicting findings.6,34–36 

However, it is clear that IL-10 is required for recovery 
from CIPN.37,38 Moreover, IL-10 inhibits NF-κB activity 
and suppresses TNF-α production by activating the JAK/ 
STAT signaling pathway, which VNS also activates.39,40 

Our results confirm up-regulation of IL-10 after VNS 
which may be involved in the protective effect. An 

interesting finding is that Western blot analysis showed 
higher IL-10 levels in rats receiving anesthesia and sur-
gery (VNS and sham stimulation) on +7 day, which 
seems to be in contradiction to the results of behavioral 
tests consistent with IHC. Given the evidence, isoflurane 
and surgery alone induced a significant elevation of IL- 
10 expression in DRG.41 Besides, IL-10 level was ele-
vated in DRG from sham-operated rats of another model 
of neuropathic pain from 3 to 14 days after the surgery.42 

There are many types of cells in DRG, including 
immune cells (neutrophils, macrophages), glial cells 
(microglia and astrocytes), and neurons. Isoflurane was 

Figure 4 Pro- and anti-inflammatory regulators in dorsal root ganglia. Immunohistochemistry was performed on dorsal root ganglia tissue taken from CIPN rats treated 
with vagus nerve stimulation (VNS) or not. (A, C) Representative images of staining against NF-κB, TNF-α, and IL-10 on day +1 or +7. (B, D) Immunohistochemistry score 
was calculated using the IHC Profiler plugin in ImageJ (see Methods). Magnification, 20X. n = 5 per group per time point. Yellow arrows indicate areas of high expression. 
* p<0.05.
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reported to have anti-inflammatory effects in all cells 
except neuronal cell lines.43 It is possible that IL-10 
level was upregulated in DRG of rats receiving VNS 
and sham surgery but not in neurons. However, the 
potential mechanism is still not clear. A better under-
standing of the molecular basis for agonist and antago-
nist mechanism of IL-10 receptor remains to be 
explored.

The expression of NF-κB and TNF-α was comparable 
between rats treated with paclitaxel and untreated rats. 
A possible explanation is that NF-κB and TNF-α production 
are transiently up-regulated early under neurotoxic condi-
tions in the DRG. In favor of this hypothesis, one study 
reported that paclitaxel treatment enhanced pro- 
inflammatory cytokine production in the spinal cord in the 
first 8 days, but this effect disappeared by day 29.44 Further 
studies should clarify the roles of IL-10 and TNF-α in CIPN 
and identify the specific pathway(s) stimulated by VNS.

Withdrawal response of rats to von Frey hair ranges 
from 5.7 to 15 g after paclitaxel treatment.10 In the present 
study, mechanical allodynia, defined as higher withdrawal 
frequency in response to a 4-g von Frey hair, was not 
detected in any group. Nevertheless, we were able to detect 
significant differences in mechanical hyperalgesia (defined 
as higher withdrawal frequency in response to a 15-g von 
Frey hair) between rats treated with VNS or not.

The study has some limitations. First, we failed to 
identify exactly when the protective effect of VNS first 
appeared and exactly how long it lasted in our CIPN 
model. Our work should be repeated with continuous 
measurements. Second, CIPN is a chronic disorder, this 
study was performed with acute but not chronic VNS. It is 
of interest that chronic VNS would be a translational ther-
apeutic approach, as demonstrated for VNS in epilepsy 
and depression. Third, the scope of our study was limited 
to the peripheral nervous system, but the effects of VNS 
on the central nervous system should also be examined. 
Fourth, our study just selected IL-10 and TNF-α as the 
representative anti-inflammatory and pro-inflammatory 
cytokines, other pain-related cytokines were not examined, 
such as IL-4, IL-6, and IL-1β. Lastly, many complex 
signaling pathways participate in the development and 
maintenance of CIPN, such as the ERK, p38, and JAK/ 
STAT signaling pathways. Regrettably, this study fails to 
explore the orle of these signaling pathways in VNS- 
mediated activities and thus reveal the potential underlying 
mechanism. Further study is needed to reveal the molecu-
lar mechanisms.

This study demonstrated that acute VNS could transi-
ently attenuate CIPN. Further studies are required to reveal 
whether chronic VNS will generate durable protective 
effect in CIPN. Recently, non-invasive VNS procedure 
has been developed in rats and human.45,46 An ongoing 
clinical trial (NCT04367480) is testing the effects of trans-
cutaneous electrical nerve stimulation on CIPN. It is 
expected that VNS may be used for the treatment of 
CIPN in the future.

Conclusions
VNS could transiently attenuate paclitaxel-induced hyper-
algesia in rats. Future studies are needed to investigate 
whether stimulation with different protocols could achieve 
durable effects.

Abbreviations
CIPN, chemotherapy-induced peripheral neuropathy; 
VNS, vagus nerve stimulation.
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